Prehistoric Museum as an Educational Content

Waynath S.P.K IT21803420
Project Final Report.

B.Sc. (Hons) Degree in Information Technology Specialized in
Interactive Media

Department of Computing

October — 2025

Prehistoric Museum as an Educational Content

Waynath S.P.K IT21803420
Project Final Report.

B.Sc. (Hons) Degree in Information Technology Specialized in
Interactive Media

Department of Computing

October — 2025

DECLARATION

I declare that this 1s my own work and this proposal does not incorporate without
acknowledgement any material previously submitted for a degree or diploma in
any other university or Institute of higher learning and to the best of my knowledge
and belief it does not contain any material previously published or written by
another person except where the acknowledgement is made in the text.

Name Student ID Signature
Waynath S.P.K 1721803420 ¥ '-‘q:ﬂl r X
21/10/2025
Signature of the Supervisor Date

(Mr Aruna Ishara Gamage)

Abstract

This project presents the design, implementation, and evaluation of an Al-powered
Virtual Guide with spatial awareness for immersive educational environments.
Developed within the Prehistoric VR Museum, the component functions as a
context-sensitive conversational agent that interprets user queries and scene data to
deliver real-time, adaptive narration.

It integrates a local Ollama Llama-3.1 model for natural-language generation,
Unity URP with the Meta XR SDK for spatial tracking, and a Glow-TTS speech
engine for natural voice output.

Unlike fixed audio tours, the guide dynamically tailors explanations to the learner’s
viewpoint, distance, and activity—turning passive observation into inquiry.

Pilot evaluations with twenty participants demonstrated high usability (SUS = 81),
stable performance (> 72 fps, < 2.5 s first-token latency), and measurable learning
gains, including improved recall and reduced “lostness.”

The findings show that embedding context-aware Al reasoning and spatial
mapping within VR transforms static exhibits into interactive, responsive learning
spaces, offering a practical model for intelligent pedagogy in future virtual-reality
systems.

Keywords: Conversational AL, Virtual Reality, Context Awareness, Spatial
Learning, Situated Pedagogy, Text-to-Speech, Local LLLM, Unity, Meta Quest,
Ollama, Llama-3.1, Glow-TTS, Educational Technology, Accessibility,
Inquiry-Based Learning, Streaming Generation, Latency Optimization,
Contextual Dialogue, Immersive Learning.

Table of Contents

Chapter 1 — INtroductioncooiiiiiiiiiiiiiiiii e 12
1.1 Role of the Component in the System............c.ccoiiiiiiiiiiiiiiiiiiiirir e, 12
1.2 Problem Statement............c.ooouiiiiiiiiiiiiiiiii et e 12
L3 ODJECLIVES.. ..ottt ettt et et e e et et eaeaene e e et seneaeaenennens 13
1.4 Scope & INterfacescc.oviiiiiiiiiiiiiiiiiiiiii e 13
1.5 Rationale & Positioning (why this design)c..cooiiiiiiiiiiiiiiiiiiii e, 15
1.6 Constraints & ASSUMPLIONS..........ooooiiiiiiiiiiiiiiiiiii e eeaaes 15
1.7 EXpected OULCOMESouninnininiiniiii ettt eeee et et et et eaeneeneeneenetnrenraennenennens 15

Chapter 2 — Literature & Design Rationale...................coooooiiiiiiiiii 16
P 0 3 4 () PPN 16
2.2 Situated and Context-Aware Learning................ccocooviiiiiiiiiiiiiiiiiniiininnenene, 16
2.3 Virtual Guides and Conversational Agents in Museumsc.c.ccceeeviviinniinnn. 17
2.4 Context-Aware Mixed Reality Frameworks.............c....cooooiiiiiiiiiiiiniiin . 17
2.5 Cognitive and UX Foundations...............cooooiiiiiiiiiiiiiiiiiiiiic e, 18
2.6 Synthesis and Design Implications.................c...ooooiiiiiiiii 18
2.7 Gaps Identifiedccooiiniiiiiiiii e eaae 19
2.8 Chapter SUMMATY.........c.oiiiuiiiiiiiiiiii e e r e e e e eaes 20

Chapter 3 — ReqUITEIMENLScc.oiuniiiiiiiiiiiiii ittt et et s e et e en et eeneeeneenanes 20
I 0 1) o () PP 20
3.2 Functional Requirementscoouiiiiiiiiiiiiiiiiiii et eaees 20

3.2.1 Input Capture and Interpretation..................ccoooiiiiiiiiiiiiiiini 20
3.2.2 User Interface and Interactionccooooiiiiiiiiiiiiiiiiiii e 22
3.2.3 System INtegrationccoooouviiiiiiiiiiiiiiiiiiii e 22
3.3 Non-Functional Requirements..............c.oeuiiuiiiiiiiiiiiiiiiiiiiii et eieneenees 23
3.3.1 Performance and Latency...........cccccoviiiiiiiiiiiiiiiiiiiiiii e 23
3.3.2 Reliability and ReCOVEIYccuiuuiuiiiiiiiiiiiiiiiii et ea e ens 23
3.3.3 AccesSiDIlItY ...ocouviinniiiiiiii 23

3.3.4 Privacy and Ethicscoiiiiiiiiii e 24

3.3.5 Maintainability and Portabilitycc..ocooiiiiiiiii 24

3.3.6 N TSTu 1) o 1 O P PP PPR TP PPPPPPRIR 24
3.4 Derived Pedagogical Requirements................ccceeeuiiiiiiiiiiiiiiiiiiinii e, 25
3.5 Requirement Traceability Matrix (eXCerpt)coceuvenviniiiiiiiiiiiiiiiiiriieeeeieeeeenenees 25
300 SUIMIMATY ...ovniiiiiiiiiiii ittt e it e e s eaa et e e b eeaaseaneenans 26

Chapter 4 — Feasibilitycooiiiiiiiiiii ettt e e ens 26
BT OVEIVICW ...ttt ettt et ettt et et st et et e e e en et eaaeaneneeaneenans 26
4.2 Technical Feasibilitycooiiiiiii et ea e 26

4.2.1 Software Stackcooiuiiiiiiiii e 26

4.2.2 Hardware Environment...............oooiiuiiiiiiiiiiiiiiiiie et e et ei e eaaee 27

4.2.3 Software Integration Feasibilitycoooooi 27

4.2.4 Scalability...........cooiiiiiiiiii e 28

4.2.5 Maintainabilityc.ooooiiiiiii e 28
4.3 Operational Feasibilityc...ccoooiiiiiiiiii e, 28

4.3.1 Deployment Modelcooiiiiiiiiiiiii e 28

4.3.2 User and Maintenance Rolescoooiiiiiiiiiiiiiiiiiiii e 29

4.3.3 Training and Documentation..................c.oceviiiiiiiiiiiiiiiniii e 29

4.3.4 Compatibility and Future Maintenancecccoiviiiiiiiiiiiiniiiiiiieiieiennns 29
4.4 Risk Assessment and Mitigationcooooiiiiiiiiiiiiiiin 29

4.4.1 Residual RisK..........coooiiiiiiiiiiiii e 30
4.5 Economic and Time Feasibility.............c.c.coooiiiiiiii, 31
4.6 Feasibility SUMmMAryccoooiiiiiiiiiii et 31

Chapter S — System Desi@nccoooiiiiiiiiiiiiiiiiiii 32
ST OVEIVICW c.eiiiiiiiiiiiiiii et e e e e et e et et s e ea et eaaee 32
5.2 Architectural Layers.........c.oouiiniiiiiiiiiiiii et e e e eaae 32

S21 INPUt LAYET c..ooiviiiiiiiiiiiii e 32

5.2.2 Context PACKEYcooiiiiiiiiiiiiii e 33

523 0Hama CHEntcouiiniiiiiiiii ettt e e eens 33

5.2.4 GUALALAIL FIIEOY . ..oonennniniiii ettt et ettt a et eeeeaenenenaenenens 34

5.2.5 Output Orchestratorcoooviiiiiiiiiiiiiiiii e 34

5.2.6 TTS SUDSYSEEIM ...c.oeniniiiiiiiieie ettt et et e e e e et s e e e eneeneenaens 35
5.2.7 Subtitle UL and UX Layercccooiuiiiiiiiiiiiiiiiiiici e 35
5.2.8 Telemetry LLOGEEIc..oniniiniiii it ee e st e e e e eaenenns 36
5.3 Data FIow DeSi@nooovuiiiiiiiiiiiiiiiiiiiiiiii e 36
5.4 Control Flow and CONCUITENCYc..ouuiiiiiiuiiiiiiiteiieieeeeeeeeeereeereeeneeneenenns 37
5.5 Component INtEractionsccovviiuiiiiiiiiiiiiiiiiiii et 37
5.6 Security and Data Handling Designcccooiiiiiiiiiiiiiiiiiiie e eaeaee 38
5.7 Extensibility and Future HOOKSccooiiiiiiiiiiiiiiiiic e 38
5.8 Design JUusStificationccooviiiiiiiiiiiiiii 38
5.9 SUMMATY . ..ooiiiiiiiiiii e 39
Chapter 6 — Implementationcoooiiiiiiiiiiiiiii 39
0.1 OVEIVICW ..oeniiiiiiiii ittt ettt et e et et e et e e s e ea et eanae 39
6.2 Unity SubSYSTeIISoivniiiiiiiiiiiiiiiiiii e 39
6.2.1 MuseumGuide.cs — Main Controllerc..cooiiiiiiiiiiiiiiin, 39
6.2.2 TextToSpeech.cs and Python TTS Serviceccooooiiiiiiiiiiiiiiiiiiinin. 40
6.2.3 RPMMOouthFromAudio.csc.oouuiiiiiiiiiiiiiiiiii e 41
6.2.4 VoiceTolnputFieldButton.cscciiiniiiiiiiiiiiiiiiiie e 41
6.2.5 EXhIDItTIIZEer.CS....uuviviiiiiiiiiiiiiiiiiiiiii e 42
6.3 Performance Optimization................cooiiiiiiiiiiiiiiiiii e 42
6.3.1 Frame Budget Control..................cooooiiiiiiiiiiiiiiiii 42
6.3.2 Audio Handling.............cooniiiiiiiiii et 42
6.3.3 Token Streaming Efficiencyc.cocoooiiiiiiiii 42
6.3.4 Memory FOOtPIint..........c.ooniiiiiiiii et e e en 42
6.4 Error Handling and Fallbacks..............coooiiiiiiiiiiiii e 43
6.5 Testing HOOKSooouiiiiiiiiiiiiiiiiiii e 43
6.6 Integration Workflow ..o e 44
6.7 Verification Snapshotsc.ooiiiiiiiiiiiiii 44

6.8 Implementation Challenges...............cc.oiiuiiiiiiiiiiiiiii e eaaae 44

6.9 SUMMATYooutiiiiiiiiiii et et ea e aa e eas 45

Chapter 7 — TeSTINEcuieniiiiii ittt et e eae et e et e e eaeeaeenennens 45
TL OVEIVIBW ...ttt ettt ettt et et et et e ea et e enetaeaesenenaetaennns 45
7.2 Testing ENVIFONIMENToooiiiiiiiiiiiii e et st et e e eaeneneenns 46
T3 UNIETESIMG ..oeooinniiiniiiiiii et a e e 46

7.3.1 Framework and COVerageccouvuuiuiiiiiiiiiiiiiiiieieee et eeeeenenennens 46
7.4 Integration TeStingccciiiiiiiiiiiiiiiiiiiiii e 47
T4 1 ODJECLIVES.....onininiiiiii ettt et et et et e e eneneenenetnseneaaennennennens 47
Ti4.2 ProCRAUIES.couiiniiiiiiiiiiiii ittt et et e e et et e e eaeans 47
T3 RESUILS ..ottt ettt et et et e e e e eeas 47
7.5 Performance and Comfort Testing.............ccoooiiiiiiiiiiiiiiiiiiiiiiii e 48
7.5.1 Frame Stabilityccooooiiiiiiiiiiiii 48
7.5.2 Audio Reliabilityoooniiiiiiiiii e 48
7.5.3 Comfort and Motion Sicknessccooouiiiiiiiiiiiiiiiii e, 48
7.6 Usability TeSting..........ccooouviiiiiiiiiiiiiiiiiiiiii e 48
7.6.1 Methodologyc..ooouiiiiiiiiiiiiiiiiiiiii e 48
7.6.2 Quantitative Resultscoooiiiiiiii e e 49
7.6.3 Qualitative InSightscoooiiiiiiii e 49
7.7 Regression and Stress Testsoooiiiiiiiiiiiiiiiiiiiiii 50
7.7.1 Regression TeSting..........c.viuiiiiiiiiiiiiiiiiie et e e e eens 50
772 SEress SCEMATIOS ...c.uvvniiniiiiiiiiiiiii et e e e e eens 50
7.8 Validation Against Requirements.c.ooouiiiiiiiiiiiiiiiiiiiiiiie et eeaae 50
7.9 Limitations Found During Testing..............cccoooiiiiiiiiiiiiiiiiiincae 51
A8 LUIT 1011111) o) PP PP PR PP PPPPPPPRt 51

Chapter 8 — ReSUILSc.oeiinii et e e e ens 52
Bl OVEIVICW ...ttt ettt e e e e et e e s e ea e e eaaae 52
8.2 Technical Performanceccoooiiiiiiiiiiiiiiiiiiiiiii e 52

8.2.1 Latency and ReSponSIVENessccooeiuiiiiiiiiiiiiiiiiiiii e 52

8.2.3 Reliability and Fallback Behaviour..................ccooooiiiiiiiiiiiiiine, 53

8.3 User Experience and Usability...........c...ccoooiiiiiiiiiiiiiiiii i 53

8.3.1 System Usability Scale.............ooiiiiiiiiiii e 53
8.3.2 Engagement and Perceived Relevancec...ccooooiiiiiiiii 53
8.3.3 Qualitative Feedback...........ccooiiiiiiiiii e 54
8.4 Learning and Accessibility Qutcomesccocooiiiiiiiiiiiiiiiiiiiiiii 54
8.4.1 Comprehension Gainscocooiiiiiiiiiiiiiiiiiiir et e e eneens 54
8.4.2 Curiosity and Inquiry Behaviour...............c...ccooiiiiiiiiiiii 54
8.4.3 AccesSibility MEtriCS.......ouniniiiiiiiiii et e e e ens 55
8.5 Correlation Highlights..............cooiiiiiiiii e 55
8.6 Comparative SUMMATYcooouiiiiiiiiiiiiiiiii ettt eaa et eaaeeaa e 55
8.7 Discussion Snapshot ...t 56
.8 SUMMANY....coiniiiiii e 56
Chapter 9 — DISCUSSION ... c.oniiiiiiiiiiei ettt et eee et et ene e eaneaneaenennans 57
0.1 OVEIVIBW ...ttt ettt ettt ettt st et et et e eneeeaeeneetaenesaneneetneennns 57
9.2 What Worked Wellcoooooiiiiiiiii e 57
9.2.1 Context Packing and Grounded Prompts............c...cccooiiiiiiiiiiiiiiininninn. 57
9.2.2 Chunked Responses and Streaming Delivery................ccooooiiiiiiiinnn 57
9.2.3 Multimodal Outputoooiiiiiiiiiiii et e e e eens 58
9.2.4 Transparency and Trust..............cccoooiiiiiiiiiiiiiiiiii e 58
9.2.5 Usability and Embodimentc..cooiiiiiiiiiiiiii e 58
9.3 Challenges and TenSIONSccooviiiiiiiiiiiiiiiiii e 58
9.3.1 Brevity Vs Depth... ... 58
9.3.2 Model Generalisation and Hallucination......................cooooiiiiniin 59
9.3.3 Latency Perception...........cco.oiuiiniiiiiiiiii i 59
9.3.4 Context Noise and Misfiresccooeeiiiiiiiiiiiiiiiiiiiii e 59
9.4 Integration LeSSOMScoocuiiiiiiiiiiiiiiiiiiiii e 59
9.5 Broader IMplIiCaAtioONSc.oouiiiiiiiii et ea e eaae 60
9.5.1 Conversational Pedagogy in VRccooiiiiiiiii e 60

0.5.2 Desi@n ELhicsoouiiniiiiiii et 60

9.5.3 Scalability to Other Domainsc..cooioiiiiiiiiiiiiiii e, 60

9.6 Reflection on User EXPeriencCe.c.couuiuiiiiiiiiiiiiiiiiiii et ene e e enne 60
9.7 Limitations Revisited..............ooiiiiiiiiiiii e 61
0.8 SUIMIMATY ..c.ueniiiiiiiii ettt et et et e e e e eaeneneeneensenetasaesaenennenns 61
Chapter 10 — Limitations.............cocoiiiiiiiiiiiiiiii e 61
TO.1 OVEIVICW ..cuniiiiiiiiiiii ittt et et e st e e et e e s ea et e eaeanseneeans 61
10.2 Technical Limitations.............ocooiiiiiiiiiiiiiiiii et 62
10.2.1 Hardware Dependency...........cccueuuiuiniiiiiiiiiiiiei e et et et enenenenenns 62
10.2.2 Model Constraintscooviuiiiiiiiiiiiiiiiiii et 62
10.2.3 Network Dependence..............cooeiuiiiiiiiiiiiiiiiiiiii et 62
10.3 Pedagogical and UX Limitations.............ccoooooiiiiiiiiiiiiniiniiin e 63
10.3.1 Evaluation SCOPe..........cocouiiiiiiiiiiiiiiiiiiiii et 63
10.3.2 Conversational Breadthc..ooiiiiiiiiiii 63
10.3.3 PersonaliSationooouiiuiiiiiiiiiiiiiii et 63
10.4 Operational and Maintenance Limits............c...c.ocooiiiiiiiiiiiiiiiiiiiiii e, 63
10.5 Conceptual Boundaries............cccooouiiiiiiiiiiiiiiiiiiiiiiii e 64
10.6 SUIMMIATY ...ooiiiniiiiiiiiiiiii et e eaa st e e e ean s eaa e saeeanaes 64
Chapter 11 — Future WOrK..........cooiiiniiiiiiii ettt eae e e eae e 64
T1.T OVEIVICW. ...ttt et et et et e e s e e e e e e e s enaeans 64
11.2 Technical EXteNSIONSc..ocouiiiiiiiiiiiiiiiii et eaaee 65
11.2.1 Multilingual and Expressive Voicesccc.ocoviiiiiiiiiiniinin, 65
11.2.2 Richer Retrieval and Grounding..................cooooiiiiiiiiiiiiiiiiiiiiir e 65
11.2.3 Adaptive Dialogue and Memory.............ccccoouviiiiiiiiiiiiiiniiini e, 65
11.2.4 Edge Deployment and Offline Mode...............cooiiiiiiiiiiiiiiiiiiiiiiiiieeeaeans 65
11.2.5 Analytics and Educator Dashboard..................coooiiiiiiiiiiiiiii s 66
11.3 Pedagogical Enhancements................coooiiiiiiiiiiiiiiiiiinii e 66
11.3.1 Curricular Integrationc.oviuiiiiiiiiiiiiiiiie et e e eaeees 66
11.3.2 Collaborative MOdesc..oeuiiiiiiiiiiiiiiiii et eeeaees 66

11.3.3 Accessibility and Inclusion..............c..coooiiiiiiiiiiiiiii e 66

11.4 Institutional and Research DIrectionSo.vvuiieiniiniieiiiiiiieereeereeneenenns 67

11.4.1 Scalable Deployment in MUSEUIMSc.ocuiiuiiniiiiniiiienieneeereeeeeeeeenenenns 67
11.4.2 Longitudinal Studies.............cccooiiiiiiiiiiiiiiiiiiii e 67
11.4.3 Standardisation and Open Frameworkscccoooiiiiiiiiiiiiiiiiiiiiienenns 67

T1.5 SUIMMATY couiiiiiiiiiiii ittt a e e aa et e aaaaes 67
Chapter 12 — Individual Contributioncooiiiiiiiiiiiiiiii e 68
12,1 OVEIVICW ...ttt ettt et e et et st et et e e s eneaaeeneansenaenns 68
12.2 Technical Developmentccooniiniiiiiiiiiiiii et e e e eneens 68
12.2.1 System Architecture and Integration...................coooiiiiiiiiiiniiininnn . 68
12.2.2 Context Awareness and Scene Logic................ccoooiiiiiiiiiiiiiiiiiin e, 68
12.2.3 Interaction and Output SyStemsccooeviiiiiiiiiiiiiiiiini e, 69

12.3 Research and Evaluation Workc..oooiiiiiiie e, 69
12.4 Collaboration and Team Contextc..ocoiiuiiniiiiiiiiiiiiiiiiii e, 69
12.5 Skills and Competencies Demonstrated................cccooooiiiiiiiiiiiiiiiiiiniinns 70
12.6 SUMMIATY ..ooiiiniiiiiiiiiii e e s ea e ea s eaa e e e eanees 70
Chapter 13 — ConcluSionccoiiiiiiiiiiiiiiii e 71
13.1 Summary of the Component..................ccoiiiiiiiiiiiiiiiiii 71
13.2 SEGMITICANCE. ..ccuniniiinii ittt e et e e e e e eaas 71
13.3 Lessons Learned.............ccooooiiiiiiiiiiiiiiiiiiii e 72
134 OULIOOK ..o e e 72
13.5 Closing Reflection.............ccooviiiiiiiiiiiiiiiiiiiii e 72

2 (3 S 1 Lo 73

Chapter 1 — Introduction

1.1 Role of the Component in the System

The Prehistoric VR Museum is a learning experience built around explorable
environment and models of dinosaurs(taxa), running on Meta Quest hardware with
Unity (URP). Within this world, the Al Virtual Guide acts as a situated mediator
between the learner and the environment. It listens for in-scene questions, notices
contextual signals (environment and nearby taxa), and answers with short,
grounded explanations that reference what the learner is currently looking at or
doing.

Concretely, the guide:

« Grounds content in place and moment. It uses a “Context Packer” to
assemble a lightweight scene summary (e.g., biome = Cretaceous floodplain;
nearest taxon = Triceratops; user heading =~ 35° toward herd)

« Generates and delivers narration. A local LLM (Ollama, Llama-3.1 §B)
produces chunked responses using prompt templates (explain, compare,
correct-gently, define, “try this observation”). A TTS layer speaks the
answer; a subtitle UI streams tokens with readable timing.

o Supports inquiry. The guide invites micro-actions (“Watch the tail posture;
what changes?”), offers follow-ups (““Want the short or detailed version?”),
and stays responsive (barge-in cancels ongoing speech).

« Respects VR comfort. It’s designed for hands-busy flow: voice input
optional, controller shortcuts available, and no heavy UI during movement.

The component interfaces one-way with other systems (ML-Agents behaviours,
biome art, educator tools). It consumes their signals (e.g., an agent tag or a lesson
node) but doesn’t own their logic.

1.2 Problem Statement

Traditional VR museum narration—fixed audio tours, static panels, generic “fun
facts”—doesn’t adapt to context or intent. Learners ask situated questions (“Why
are the juveniles staying near the edges?”’) that depend on where they are, what
they’re seeing, and what they just did. Without timely, grounded answers, users

report “lostness,” fragmented attention, and shallow recall. We need on-scene
explanations that:

« adapt to visual context (biome, taxa, distance/angle),
« match cognitive state (novice vs. curious deep-dive), and
« fit VR constraints (low latency, no frame drops, readable subtitles).

1.3 Objectives

This component aims to:

1. Implement a context-aware Q&A loop: Unity — Context Packer — Local
LLM (Ollama/Llama-3.1) — Output Orchestrator — Subtitles + TTS.

2. Maintain VR comfort/performance: first-token latency targets; stable
framerate during streaming; subtitle legibility targets.

3. Validate usefulness & usability: tests and pilot sessions benchmarking
perceived usefulness, time-to-answer, and reduced “lostness.”

4. Provide a natural interface: voice or controller-triggered prompts; optional
text input; follow-ups like “more detail,” “compare,” “show me.”
Measurable targets (summary):
o First-token <2.5 s on LAN; 150-200 words in < 6—8 s when needed.

o Audio underruns < 1%; >72 fps maintained during narration with typical
effects enabled.

« Subtitle legibility: >1.2° visual angle; AA colour-contrast; speech rate 0.85—
1.15x.

« Safe fallback behaviours when LLM/TTS offline (prebaked lines keyed by
context).

1.4 Scope & Interfaces

In-scope

« Context extraction and packing (biome, nearest taxa, user posture/pose
proxies, lesson node, optional noise level).

Prompt template selection + budget control (chunked, grounded, hedged
when uncertain).

Local LLM orchestration via Ollama with token streaming.
Output orchestration (TTS barge-in + subtitle timing).

Telemetry and lightweight logging for evaluation.

Out-of-scope (owned by other components)

Agent behaviours (ML-Agents for animal Al).
Biome assets & rendering budgets (art/performance budgets).

Educator dashboards & analytics (future work; this guide emits events but
doesn’t own the dashboards).

Content policy & curation pipelines (this component consumes approved
“Knowledge Cards” and safety-reviewed packs when available).

External Interfaces (high level)

Unity Scene Signals — Context Packer: exhibit tags, agent IDs,
distances/angles.

Context Packer — LLM Client: compact JSON context + selected
template + token budget.

LLM Client — Output Orchestrator: streamed tokens (for progressive
subtitles) and final text (for TTS).

Output Orchestrator — UI/TTS: chunked subtitle lines; barge-in-safe
audio queue.

Fallback Store: prebaked, context-keyed lines when LLM/TTS is
unavailable.

Telemetry Logger: timestamps for mic/press—first-token, queue durations,
barge-in events, fallback usage.

1.5 Rationale & Positioning (why this design)

Situated learning hits harder when explanations are anchored to what’s
literally in the user’s view, keeping cognitive load low and curiosity high.

Local LLM + short templates keep latency predictable and answers
concise. When uncertainty is high or coverage is thin, the guide hedges and
offers to pull from curated Knowledge Cards rather than improvise.

Dual-channel presentation (TTS + subtitles) meets accessibility goals and
helps under noisy conditions.

Barge-in & chunking create a conversational feel while respecting VR
comfort—no long monologues, and users can interrupt cleanly.

LAN Ollama provides privacy, stability, and cost control; prebaked lines
cover offline moments.

1.6 Constraints & Assumptions

Hardware: Meta Quest (standalone), LAN access to an Ollama host.

Software: Unity 2022 LTS (URP), Meta XR SDK/XR Interaction Toolkit,
Ollama with Llama-3.1-8B, Coqui Glow-TTS (or OS TTS) via a Python
microservice.

Data: Scene metadata is minimal by design (no continuous PII capture);
voice stays local where possible; logs are de-identified.

1.7 Expected Outcomes

Experience: Lower “lostness,” faster time-to-answer vs. static signage/audio
tours.

Performance: Stable frame timing during streamed subtitles and TTS
playback.

Trust & safety: Noticeable reduction in over-general answers through card-
first grounding; consistent hedging when evidence is thin.

Extensibility: Clean seams for future educator dashboards, richer retrieval
(RAG over curated corpora), and multilingual voices.

Chapter 2 — Literature & Design Rationale

2.1 Overview

The Virtual Guide draws on three intersecting research lines:

1. Situated and context-aware learning — how embedding explanations in
place and moment improves retention and engagement.

2. Conversational and multimodal agents in cultural heritage — how
avatars, chatbots, and embodied agents have mediated museum learning.

3. Mixed-reality and Al integration frameworks — how real-time spatial
understanding and adaptive perception make guidance believable under
device constraints.

Together, these studies point to a shift from telling toward co-exploring: learners
become participants inside a dialogue that unfolds within the environment itself.

2.2 Situated and Context-Aware Learning

Early work on context-aware ubiquitous learning environments (Herpich et al.,
2014) established that mobile and pervasive systems can raise motivation by
tailoring content to location, activity, and learner profile. Their “Context Prober +
Tutor Agent” architecture informed this project’s own Context Packer + LLM
Loop, where semantic context (biome, taxa proximity, user posture) replaces GPS
or device sensors.

In cognitive terms, this follows the situated learning tradition: knowledge is
anchored to the setting in which it is applied. Cimadevilla et al. (2023) showed that
spatial memory strengthens when VR environments evoke real-world navigation
cues; contextually timed guidance reinforces that mapping between action and
recall.

A direct implication for design is brevity: explanations must be short enough to
accompany perception without fragmenting it. Hence, this project favours chunked
narration over continuous lectures—echoing Herpich’s recommendation to
“mediate, not dominate” the learning flow.

2.3 Virtual Guides and Conversational Agents in Museums

The idea of digital museum companions predates modern LLMs.

Papagiannakis et al. (2005) demonstrated Mixed-Reality Agents capable of
aligning verbal cues with visitors’ spatial orientation, combining computer graphics
with rule-based dialogue. Pelachaud, Poggi & de Rosis (2005) advanced this with
adaptive multimodal perception, where the agent adjusted gaze, gesture, and
tone to visitor distance and focus.

Later, Roussakis & Boiano (2019) proposed knowledge-graph-driven chatbots
for cultural heritage, letting curators encode verified triples (“species—period—
location”) to feed conversational retrieval. That notion—keeping the model’s
knowledge bounded by a curated graph—directly inspired the Knowledge Card
mechanism in this guide.

More recently, Ressi & Di Marzo Friha (2025) surveyed Al use in GLAMs
(Galleries, Libraries, Archives, Museums). They warned against over-automation
and urged “interpretive transparency’’: agents should expose where information
comes from. The present design’s card-first grounding and uncertainty language
reflect that advice.

Across these lines, embodiment remains key: visitors trust guidance more when it
appears anchored in space. The Ready Player Me avatar used here inherits that
ethos—animated subtly through mouth-sync scripts rather than overt theatricality,
keeping the voice grounded yet unobtrusive.

2.4 Context-Aware Mixed Reality Frameworks

Chen et al. (2019) proposed a learning-based framework for semantic-level
interaction, where scene understanding pipelines label surfaces and objects to
drive context-sensitive actions. Their results underline the importance of semantic
richness over geometric accuracy. In this project, full 3D segmentation is replaced

with lightweight tagging (“taxon”, “biome”, “interaction-zone”), yielding most of
the pedagogical benefit at a fraction of the compute cost.

Similarly, Sprute et al. (2019) demonstrated how robots can learn virtual borders
through semantic scene understanding and augmented-reality feedback. Translating

that to VR: the guide must sense where not to speak—for example, staying silent

when the user is moving quickly or focusing on locomotion tasks. Spatial

awareness thus governs both when and what to say.

2.5 Cognitive and UX Foundations

Holz et al. (2006) framed embodied conversational agents as social actors whose

timing, gaze, and turn-taking shape perceived intelligence more than linguistic
depth. That insight fits mobile VR, where latency and cadence outweigh

vocabulary size. The guide’s streaming subtitles serve as back-channel cues,
assuring users the system “heard” them even before speech begins—reducing

cognitive drift.

Pietroni et al. (2021) argued for universal design in interactive museums,

highlighting multisensory access and adjustable pacing. Following that, the guide

delivers dual-channel output (audio + text), adjustable rate, and clear contrast
ratios meeting accessibility AA guidelines.

2.6 Synthesis and Design Implications

From the reviewed works emerge several design anchors:

Research thread

Key finding

Design translation in
this project

Context-aware ubiquitous

Tailor content to learner

Context Packer

learning (Herpich 2014) context to sustain sampling biome, taxa,
motivation user pose

Spatial memory in VR Spatially grounded cues | Scene-anchored

(Cimadevilla 2023) aid recall narration referencing

landmarks

Mixed-Reality museum
agents (Papagiannakis 2005;
Pelachaud 2005)

Multimodal behaviour
Increases immersion

Avatar with subtle
mouth-sync and
gesture pacing

Knowledge-graph chatbots Grounded retrieval JSON Knowledge

(Roussakis 2019) prevents hallucination Cards with curated
facts

Al in GLAMSs (Ressi 2025) Transparency and Cite card sources;
authorship build trust hedge uncertainty

Context-aware MR (Chen Semantic scene context | Lightweight tagging;

2019; Sprute 2019) drives intelligent silence heuristics
response

Universal museum design Multisensory, adjustable | TTS + subtitles, user-

(Pietroni 2021) pacing controlled rate

Collectively, these studies justify a context-aware, multimodal, grounded, and
transparent guide architecture rather than a general chatbot overlay.

They also shape the evaluation lens: usefulness, relevance, trust, and comfort are
the metrics that matter more than raw accuracy.

2.7 Gaps Identified

Despite progress, three persistent gaps motivate this project:

1. Latency realism — Few prior systems meet real-time comfort thresholds on
standalone VR headsets.

2. Grounded language generation — Museum chatbots often remain text-

only; spatial references (“behind you”, “above the ridge”) are seldom
computed dynamically.

3. Evaluation granularity — Most studies measure engagement broadly; few
isolate metrics like “time-to-answer” or subtitle readability under motion.

Addressing these gaps positions the Al Virtual Guide as both an engineering
contribution (pipeline optimization) and a pedagogical one (contextual explanation
under embodied constraints).

2.8 Chapter Summary

The reviewed literature shows a steady convergence toward embodied, context-
aware, and ethically transparent learning companions.

Your component extends this lineage by combining local LLM reasoning, real-
time context packing, and accessibility-first VR UX within a single deployable
Unity module.

It treats conversation as situated scaffolding rather than a standalone chatbot
interaction—anchored in the user’s spatial and cognitive frame.

Chapter 3 — Requirements

3.1 Overview

The Al Virtual Guide operates as a self-contained subsystem within the Prehistoric
VR Museum. Its requirements derive from three sources:

1. pedagogical goals identified during early educator interviews,

2. technical and ergonomic limits of the Meta Quest standalone environment,
and

3. accessibility and privacy expectations aligned with educational deployment.

Each requirement therefore serves two masters—I/earning effectiveness and system
feasibility.

3.2 Functional Requirements

3.2.1 Input Capture and Interpretation
R1 — Multimodal query capture

o The guide shall accept voice, text, and controller-triggered prompts.

« A speech-to-text pipeline using Windows Speech API or an offline ASR
engine must transcribe queries locally.

« Rate-limit and debounce mechanisms prevent accidental double-triggers
during locomotion.

R2 -

R3 -

R4 -

RS -

R6 -

R7 -

Intent parsing and classification

The system distinguishes among inquiry types: explain, compare, define,
correct, and observe.

Lightweight intent detection is performed client-side to avoid cloud
dependency.

Context acquisition (Context Packer)

Capture spatial metadata every 200 ms: biome tag, nearest taxon, user
orientation, distance bin, lesson node, and optional environmental noise.

Normalise into a compact JSON package (< 1 kB) passed to the LLM
prompt template.

Prompt generation and orchestration

Compose a structured prompt containing: system role, context card
summary, user query, and desired answer style.

Maintain token budgets (< 350 tokens) for low-latency streaming.
Streaming output handling
Display partial tokens in the subtitle UI in < 150 ms batches.

Queue full segments to TTS with barge-in control—new input cancels
playback gracefully.

Fallback mechanisms
If LLM unreachable: use prebaked responses indexed by exhibit ID.
If TTS fails: display subtitles plus auditory chime.
If both fail: present static overlay text with retry prompt.

Telemetry and logging

Record timestamps for every stage (input, context pack, first token, TTS
start) to evaluate latency and user comfort.

Store locally; export anonymised CSVs for research review.

3.2.2 User Interface and Interaction
RS8 — Subtitle Ul

« Stream text with clear segmentation and fade transitions.

o Maintain minimal head-locked footprint; allow reposition toggle for left- or
right-eye dominance.

R9 — Voice and avatar synchrony

o Mouth animation (RPMMouthFromAudio) must follow amplitude envelope
of generated audio file.

« Synchrony error < 100 ms between lip motion and audio peak.
R10 — Feedback cues
« Visual pulse or subtle glow indicates system listening.

o Progress bar shows token generation in real time to reduce perceived delay.

3.2.3 System Integration
R11 — Unity integration

o The module communicates via REST calls to a Python micro-service hosting
Ollama and Coqui TTS.

« Use asynchronous I/O to prevent frame blocking.
R12 — Performance envelope
« Maintain > 72 fps with full environment effects active.

o Allocate < 10 MB per session to guide subsystem assets (audio buffers,
subtitles, logs).
R13 — Extensibility
o API hooks for educator dashboards: expose “current query”, “active lesson
node”, and “user pose” events.

« Ensure modular separation so dashboard failure never halts core narration.

3.3 Non-Functional Requirements

3.3.1 Performance and Latency

Metric Target Rationale

First-token latency <25s Perceptual immediacy; below comfort
(LAN) threshold identified in pilot

Full response (150— | <8s Keeps narration within short-term memory
200 words) window
Frame rate > 72 fps Prevents motion sickness; aligns with

Quest refresh rate

Audio underruns <1% Ensures fluent speech output

3.3.2 Reliability and Recovery

o Graceful degradation: the guide must continue offering usable information
even if LLM or TTS modules fail.

« Retry policy: up to two reconnection attempts with exponential back-off.

« Watchdog timer: resets stalled TTS queue after 5 s of silence.

3.3.3 Accessibility
« Subtitles subtend at least 1.2° visual angle; minimum text height adjusts with
headset FOV.

o Contrast ratio > 4.5:1 against background.
« Adjustable speech rate (0.85—1.15x%) and volume scaling.
« Optional high-contrast mode and dyslexia-friendly typeface.

These follow Pietroni et al. (2021) recommendations on multisensory access and
universal museum design.

3.3.4 Privacy and Ethics

« Voice captured locally; never streamed to external servers.
« Logs exclude biometric identifiers; timestamps and hashed IDs only.
« All Knowledge Cards reviewed by educators before deployment.

« Unverified queries are flagged for post-session analysis rather than answered
ad hoc.

Ressi & D1 Marzo Friha (2025) stress interpretive transparency; the guide therefore
discloses when an answer i1s derived from ‘“curated museum content” vs “model
inference.”

3.3.5 Maintainability and Portability

« Code follows Unity C# naming conventions and single-responsibility
structure; scripts are independent of exhibit assets.

« Configuration in JSON files enables new biomes or languages without code
changes.

« Python micro-service packaged via Docker for reproducible deployment on
LAN servers.

3.3.6 Security

o Local network access restricted to authenticated devices.

o Regular integrity checks on cached audio files to avoid tampering.

3.4 Derived Pedagogical Requirements

While functional specs describe how, these address why:

Code | Requirement Educational intent
P1 Provide contextually grounded Reinforce situated learning and
explanations spatial memory (Cimadevilla 2023)
P2 Encourage curiosity through Support inquiry-based learning
follow-ups (“Why do you
think...?”)
P3 Permit user-controlled pacing Reduce cognitive overload; align
with universal design
P4 Acknowledge uncertainty when Model scientific reasoning habits
data incomplete
P5 Foster reflection via short recaps Aid consolidation before moving to
next exhibit

These requirements ensure that technology serves pedagogy rather than the
reverse.

3.5 Requirement Traceability Matrix (excerpt)

ID | Description Verification Method

R1 | Multimodal query capture Unit test + pilot observation

R3 | Context Packer JSON accuracy | Integration test with mock scene
RS | Subtitle—audio sync End-to-end latency measurement
R9 | Subtitle Ul readability User survey + AA contrast check
R13 | Performance envelope OVR Metrics tool

P2 | Curiosity prompts Educator review + usability logs

3.6 Summary

The requirement set defines a context-aware conversational loop that performs
under mobile VR constraints while upholding educational and ethical standards.
Each item connects to a measurable outcome—Ilatency, frame rate, readability,
trust—which will later guide testing and evaluation.

Chapter 4 — Feasibility

4.1 Overview

Feasibility analysis determines whether the Al Virtual Guide can be implemented,
operated, and sustained within the Prehistoric VR Museum’s constraints. The
analysis covers three domains:

1. Technical feasibility — the capacity of available hardware and software to
deliver the desired performance;

2. Operational feasibility — how the component fits into the development
pipeline, user workflow, and institutional context;

3. Risk assessment and mitigation — the predictable points of failure and their
planned countermeasures.

Each dimension is tested against the central requirement: delivering responsive,
context-aware guidance without compromising frame stability or user comfort on
standalone VR hardware.

4.2 Technical Feasibility
4.2.1 Software Stack

Layer Tool/Framework Purpose

Core Unity 2022.3 LTS (URP) Scene management, spatial
Engine triggers, avatar rendering

VR SDK

Meta XR SDK + XR
Interaction Toolkit

Input capture (hand/controller),
tracking, haptics

CSYV exporter

LLM Host | Ollama with Llama-3.1-8B Local inference and context-
(local) grounded text generation

TTS Layer | Coqui Glow-TTS (Python Speech synthesis; cached audio
micro-service) reuse

Networking | Async REST API Bridge between Unity client and
(UnityWebRequest) Python server

Avatar Ready Player Me 3D embodiment for guide; lip-

sync and gesture hooks
Logging Unity Analytics + custom Latency and comfort metrics

The entire pipeline operates without cloud dependencies, making it deployable in
museum settings with controlled networks.

4.2.2 Hardware Environment

o Headset: Meta Quest 3 or equivalent standalone VR device.

o LAN Server: A mid-range desktop (Ryzen 7 /32 GB RAM / RTX 3060 Ti)
hosting Ollama and TTS.

o Local Wi-Fi: latency < 10 ms typical within lab network.

« Audio: headset onboard spatial speakers or external Bluetooth headset.

Benchmarks from pilot builds confirm that Llama-3.1 8B in quantised (q4 0) form
can stream first tokens within 2.1-2.4 s over LAN—meeting the comfort target.

Glow-TTS generation of 200 words averages 1.7 s, with subsequent playback

instantaneous due to caching.

4.2.3 Software Integration Feasibility

« Unity communicates asynchronously with the Python services; no main-
thread blocking observed.

« GPU load from avatar rendering (= 3 ms/frame) leaves sufficient headroom
under the Quest’s 72 Hz budget.

« URP’s lightweight shading path enables simultaneous subtitle rendering and
environmental VFX (rain, dust) with negligible overhead (< 0.5 ms).

4.2.4 Scalability

The design supports both single-user and multi-headset LAN setups. Ollama
instances can serve concurrent requests via session tokens; caching of common
exhibit explanations further reduces load.

An optional “Edge Mode” with smaller models (Llama 3.2 1B) is feasible for fully
offline demonstrations, trading nuance for independence.

4.2.5 Maintainability
All configuration resides in editable JSON:

{

"biome": "Cretaceous",

"taxa": ["Triceratops", "Tyrannosaurus"],

}

Educators can extend or modify content without developer intervention. The
modular scripts—MuseumGuide.cs, TextToSpeech.cs—follow single-
responsibility principles, easing future substitution of TTS or LLM back-ends.

4.3 Operational Feasibility
4.3.1 Deployment Model

« On-site installation: one LAN server per exhibition hall; Quest headsets
connect via secure Wi-Fi.

« Standalone classroom mode: single PC runs both Unity build and Ollama
service for demonstrations.

« Update path: educators upload new Knowledge Cards or voice fonts via a
simple admin panel; scripts auto-refresh on restart.

The absence of cloud APIs simplifies compliance with institutional IT policies (no
student data transmitted externally).

4.3.2 User and Maintenance Roles

Role Responsibility

Developer | Maintain Unity project, API endpoints, and models

Technician | Monitor LAN health, restart services, rotate caches

Learner Interact naturally; no configuration required

Routine operation involves minimal technical skill—turn on headset, connect to
Wi-Fi, start museum experience.

4.3.3 Training and Documentation

A concise handbook accompanies deployment: setup steps, fallback procedure, and
safety notes. Internal staff workshops (= 2 hours) suffice for educators to manage
content packs.

4.3.4 Compatibility and Future Maintenance

Because Unity and Ollama are version-controlled, future updates (e.g., Unity 2025
LTS) can re-target APIs without major refactor. The local-server design also
isolates experimental upgrades—Iike multilingual models or new TTS voices—
without affecting released builds.

4.4 Risk Assessment and Mitigation

Risk Likelihood | Impact | Mitigation Strategy
R1: Excessive latency due | Medium High Use quantised models;
to model load stream tokens; pre-warm

LLM context

R2: Verbose or off-topic | Medium Medium | Apply strict system
answers prompts grounding; limit
token budget

about interaction flow

R3: TTS desync or Low Medium | Pre-cache recent responses;

failure barge-in handler cancels
gracefully

R4: Network drop Low High Maintain local fallback

between headset and lines; automatic

server reconnection retry

R5: Model content error | Medium High Educator-curated card

(hallucination) priority; “uncertainty”
phrasing; audit logs

R6: Frame-rate drop Low High Asynchronous calls;

during streaming throttle subtitle updates;
pool UI objects

R7: Privacy breach Low High Local-only processing;

through captured voice auto-delete buffers after

data session

R8: Educator content Medium Medium | JSON validation; schema

misconfiguration enforcement with error
prompts

R9: Hardware Low Medium | Auto-pause after 25 min

overheating during continuous runtime; lower

extended sessions rendering load

R10: User confusion Medium Low Onboarding tutorial with

visual hints (““Ask me about
what you see”)

4.4.1 Residual Risk

Even with controls, two residual risks remain:

1. Generalization errors — occasional over-simplifications inherent to LLMs;
mitigated by card citations and “teach-back” prompts.

2. Institutional constraints — museums without LAN permission might
require portable server kits.

Both are considered manageable given the observed pilot stability.

4.5 Economic and Time Feasibility

Approximate development effort (single-developer baseline):

Task Duration (weeks)

Context Packer + scene integration

Ollama + TTS micro-service setup

UI and subtitle system

Prompt template & guardrails

W N N N W

Testing and optimization

Educator content onboarding 1

Total: = 13 weeks for a production-ready prototype. Hardware and software costs
remain modest: one high-end PC server and standard Quest units

4.6 Feasibility Summary

Dimension | Verdict Supporting Evidence

Technical | Feasible Proven LAN performance; modular Unity
architecture

Operational | Feasible Simple educator workflow; minimal maintenance

Economic | Feasible Low recurring costs; open-source stack

Risk Acceptable | Mitigation strategies in place; fallback modes
validated

Conclusion: the component is technically and operationally viable within the
current system’s scope. The main dependency—Ilocal model hosting—has

acceptable latency and clear recovery paths. The design’s modularity also positions
it for scalable museum deployments and future educational pilots.

Chapter 5 — System Design

5.1 Overview

The Al Virtual Guide follows a modular, service-oriented architecture that
separates heavy inference tasks from real-time VR rendering.

The design goal: preserve VR comfort and latency stability while maintaining
semantic grounding and educator control.

High-level flow:

User — Input Layer — Context Packer — Ollama Client (stream) —
Guardrail Filter — Output Orchestrator — Subtitle Ul + TTS Player —
Telemetry Logger

5.2 Architectural Layers

5.2.1 Input Layer

« Voice Interface: Captures microphone input, converts to text through local
ASR (Windows Speech API or offline Vosk).

o Text Interface: Optional input field for users who prefer typing.

« Controller Triggers: Shortcuts for repeating last prompt or requesting
“explain more.”

Key Class: VoiceTolnputFieldButton.cs
Handles recording, noise suppression, and debounced push-to-talk logic.

The input layer also emits the intent signal (question, clarification, observation)
derived from shallow text classification.

5.2.2 Context Packer
The Context Packer gathers spatial and pedagogical metadata before every query.

Source Example Field Update Rate

Scene tags biome = “Cretaceous”, taxon = 10 Hz
“Tyrannosaurus”

Player pose headset position, orientation 60 Hz (sampled down
(quaternion) to 10 Hz)

Agent proximity | nearest taxon distance bin event-based
(near/mid/far)

Environmental light level, noise flag per frame

state

All values are normalized into a compact JSON structure (< 1 KB):
{

"biome": "Cretaceous floodplain",

"nearest taxon": "Triceratops",

}

This object travels with the user’s text to the LLM Client.

5.2.3 Ollama Client

Implements asynchronous streaming calls to the local Ollama server hosting
Llama-3.1 8B.

Prompt Template Example:

System: You are the museum’s Al guide.
Context: {context packer json}

User: {user_query}

Instruction: Give a concise explanation (<150 words), grounded in context.

Responses are received token-by-token. The first token triggers subtitle pre-render,
giving instant visual feedback.

Performance Notes:
o Average first token latency 2.3 s (LAN).
« Streaming buffer = 12 tokens per update (8—12 word chunks).

« Timeout set to 8 s to avoid hangs.

5.2.4 Guardrail Filter

Before output reaches users, the text passes through a light post-processing layer:
1. Length constraint: trims excessive verbosity.
2. Safe-topic filter: checks banned words / off-topic patterns.

3. Confidence hedging: injects phrases like “Scientists think...” when
uncertainty detected.

4. Citation tagging: appends Knowledge Card reference when applicable.

The Guardrail ensures answers stay pedagogically aligned and institution-safe.

5.2.5 Output Orchestrator

Central dispatcher managing simultaneous text and audio output.
Functions:

o Stream partial text to the Subtitle UI.

« Send complete segments to TTS Queue.

« Handle barge-in: if new input arrives, cancel current TTS clip and flush
queue.

« Maintain sync metadata for lip animation (RPMMouthFromAudio.cs).

Workflow:
1. Receive chunk from Ollama.
2. Display text with fade-in; send to TTS service.
3. When audio ready, play + trigger mouth animation.

4. Log timestamps for sync analysis.

5.2.6 TTS Subsystem

The Python service exposes a /speak endpoint.
Unity calls:

POST /speak

{ "text": "The Triceratops herd spreads out to avoid collisions.", "voice": "Glow-
TTS-default" }

The service returns an OGG file path.
Unity plays it via AudioSource, while RPMMouthFromAudio.cs drives lip
movements from the waveform’s amplitude envelope.

Caching:
o Hash of text — audio file.

« On duplicate request, playback occurs instantly (< 100 ms).

5.2.7 Subtitle UI and UX Layer

« Displays rolling captions at ~20 characters per line.
« Uses white text on semi-transparent dark panel; contrast > AA standard.

« Panel anchored to world-space near user’s gaze point, with adjustable
distance (1.5-2 m).

« Supports user controls: pause, replay, more detail.

This dual channel—audio + subtitle—implements redundant modality for
accessibility.

5.2.8 Telemetry Logger

Records for each session:

Metric Purpose

mic—first_token latency | Perceived responsiveness

total response time Throughput

audio duration Comfort profiling
frame rate Performance validation
fallback count Reliability index

Logs output to CSV for later analysis in Python pandas scripts.

5.3 Data Flow Design
Sequential Steps:

1. Input event: User speaks or presses trigger.

Context capture: Scene state sampled; JSON built.

Prompt creation: Merged context + user query — structured prompt.
Transmission: Sent to Ollama via REST POST.

Streaming response: Tokens arrive; partial subtitles update.
Guardrail filter: Sanitize text; tag citations.

TTS request: Send chunk to Python TTS API.

Audio playback: Stream output through Unity AudioSource.

A A T A I A

Mouth sync + Ul fade: Visual feedback.

10.Telemetry log: Record metrics and any fallbacks.

This flow isolates heavy processing from Unity’s main thread, maintaining smooth
frame rendering.

5.4 Control Flow and Concurrency

« Main Thread: handles scene updates and subtitle rendering.

o Worker Thread 1: manages Ollama requests (asynchronous HTTP).
« Worker Thread 2: handles TTS requests and audio stream decoding.
« Coroutine: monitors queue state and syncs subtitles with audio.

This pipeline uses non-blocking await/async patterns; Unity coroutines
periodically poll for completion, preventing UI stutter.

5.5 Component Interactions

Component Depends on Provides to

Input Layer none Context Packer, Orchestrator

Context Packer Biome Manager, Agent | Ollama Client
Tags

Ollama Client Network Service Guardrail Filter — Output
Orchestrator

Guardrail Filter Knowledge Card DB Output Orchestrator

Output TTS Service, Subtitle UI | Telemetry Logger
Orchestrator

TTS Service Python backend AudioSource — Avatar
Telemetry Logger | all components Analytics reports

These relationships remain loosely coupled; each module communicates through
JSON messages, ensuring easy substitution of future models or APIs.

5.6 Security and Data Handling Design

1. Local Processing: No external API calls; all inference occurs within LAN.
2. Ephemeral Voice Buffers: Cleared after transcription.

3. Access Control: Only authenticated headsets can issue requests to the LAN
server.

4. Audit Trail: Logs signpost whether answers came from Knowledge Cards
or model inference, supporting educator oversight.

5.7 Extensibility and Future Hooks

Future Feature Integration Path

Multilingual TTS Plug new voice model into Python service; update
JSON config

Retrieval-augmented Add vector database lookup before Ollama prompt

generation

Educator Dashboard Subscribe to Telemetry Logger via WebSocket

Adaptive lesson Connect lesson_node progress to Learning

sequencing Analytics API

Offline mode Deploy light model (Llama 3.2 1B) on device;
disable LAN calls

The system’s service boundaries make such growth non-disruptive.

5.8 Design Justification

o Modularity keeps the headset build light and compliant with Quest runtime
limits.

« Streaming architecture lowers perceived latency and maintains social
presence.

o Guardrail filter enforces educational tone and ethical boundaries.

o Dual channel output supports universal access and cross-modal learning.

o Telemetry feedback enables continuous improvement—rare in typical
museum guides.

5.9 Summary

The architecture treats conversation as an event-driven loop anchored in space and
context.

Data flows outward from perception (Context Packer) to language (Ollama), then
returns through audio and text channels without breaking frame continuity.

Every subsystem can fail gracefully; users always receive some level of guidance.
The resulting design balances pedagogical depth, technical feasibility, and
operational resilience—the core of a reliable Al Virtual Guide.

Chapter 6 — Implementation

6.1 Overview

Implementation focused on translating the modular design into Unity C#
subsystems coordinated with a lightweight Python service stack. Each Unity script
handled a single function—context gathering, LLM communication, or audio
rendering—so that the museum scene remained performant even during streaming
narration.

Development occurred in Unity 2022.3 LTS (URP) on Windows 11, tested on
Meta Quest 3 via Link. The server layer (Ollama + Coqui TTS) ran locally to keep
inference latency predictable and privacy intact.

6.2 Unity Subsystems

6.2.1 MuseumGuide.cs — Main Controller

This master script coordinates the overall loop:
1. Listens for a query event from VoiceTolnputFieldButton.cs.

2. Invokes ContextProber to gather scene metadata.

3. Builds a structured prompt and dispatches it via asynchronous REST to the
Ollama endpoint.

4. Receives streamed tokens and passes them to the Output Orchestrator.
Core pattern:
async void OnUserQuery(string query) {

var context = ContextProber.BuildContextJSON();

var prompt = PromptBuilder.Compose(context, query);

await OllamaClient.StreamCompletion(prompt, OnPartial, OnComplete);

}

The asynchronous flow ensures Unity’s main thread never stalls; subtitles appear
almost immediately, even before full generation.

6.2.2 TextToSpeech.cs and Python TTS Service
TextToSpeech.cs posts to a local Python endpoint:

@app.post("/speak")
def speak():
data = request.json
wav = tts.synthesize(data["text"])
path = save audio(wav)
return {"path": path}
The Unity side:
async Task<string> RequestTTS(string text) {
var json = JsonUltility. ToJson(new { text });
var res = await client.PostAsync(ttsURL, new StringContent(json));

return ParsePath(res);

}

Generated OGG/ WAV files are cached by MDS5 hash of text, drastically cutting
repeated-latency for common lines (“Observe the herd spacing.”).

6.2.3 RPMMouthFromAudio.cs

Links audio amplitude to the Ready Player Me avatar’s jaw bone:
float[] samples = new float[1024];
audioSource.GetOutputData(samples, 0);

float intensity = Mathf. Abs(samples.Average());
avatar.SetBlendShapeWeight("JawOpen", intensity * 100f);

This lightweight approach avoids external viseme mapping yet delivers convincing
articulation at 72 fps.

6.2.4 VoiceTolnputFieldButton.cs

Connects microphone input to text field.
It uses the Windows Speech Recognizer in dictation mode; when unavailable, it
falls back to Vosk ASR for offline support.

Features:
« Push-to-talk via controller A button.
« Noise gate to ignore ambient museum audio.
« Confirmation beep when recording stops.

The transcribed text is displayed in a floating field before submission—reducing
user anxiety about mishearing.

6.2.5 ExhibitTrigger.cs
Each exhibit prefab carries an ExhibitTrigger script:

« Sends an “entered” event when the player steps into its collider.
« Passes metadata (name, species, description ID) to the Context Prober.

« Can auto-trigger the guide after N seconds of idle time, prompting
observation (“Notice how the juvenile follows the mother.”).

6.3 Performance Optimization

6.3.1 Frame Budget Control

« URP Forward+ Renderer for minimal overdraw.
« All subtitles and UI panels pooled; no runtime Instantiate.
o TTS and network operations handled in async coroutines.

« Garbage collection spikes reduced by object reuse; profiler shows GC
alloc/frame = 0.3 KB.

6.3.2 Audio Handling
o AIITTS clips preloaded asynchronously on a background thread.

o AudioSource uses streaming clip mode to prevent large allocations.
« Spatialization disabled for narration (head-locked mono) to save CPU.

6.3.3 Token Streaming Efficiency

Instead of waiting for complete sentences, subtitles update every 8—12 tokens.
Perceived responsiveness increased =~ 40 % during pilot tests; users report “it starts
speaking almost immediately.”

6.3.4 Memory Footprint
« Average runtime memory = 380 MB (Unity player + TTS buffers).

« Fits comfortably within Quest 3’s 8 GB RAM envelope.

6.4 Error Handling and Fallbacks

Condition System Response

LLM timeout Display message: “I’m thinking ... please wait.”; after 8 s —
load prebaked line

Network drop Retry x2 with 2 s backoff; then use local fallback lines

TTS fail Show subtitle only + soft chime
Audio queue Flush queue; barge-in cancels current clip
blocked

Missing context | Generic safe response: “We are in a prehistoric environment
... observe the movement patterns.”

Each fallback preserves conversational flow; no silent dead-ends occur.

6.5 Testing Hooks

Unit test harnesses implemented using Unity Test Runner:

Test Purpose

PromptTemplaterTests | Confirms context and query merge properly within
token limits

ContextProberTests Validates nearest-taxon detection under frame jitter
GuardrailTests Ensures banned or uncertain terms handled correctly
TTSQueueTests Checks barge-in cancels prior clip cleanly
LatencyTests Measures mic—first_token across 50 runs

Automated test coverage reached = 85 % of guide-specific code paths.

6.6 Integration Workflow

1. Start-up: Python services launch automatically with Unity build via batch
script.

2. Runtime: Unity client opens persistent connection to Ollama API.
3. Session end: Logger flushes CSV; Python server clears cache.

4. Deployment: Build packaged with post-install script that configures server
IP dynamically.

This lightweight pipeline allowed same-day iteration—critical for tuning prompt
templates and UX timing.

6.7 Verification Snapshots
o OVR Metrics: steady 73—74 fps during 15 s answer with full rain FX.

o Audio underrun rate: < 0.8 %.
« Subtitle—audio sync offset: < 120 ms (mean).
« User reported “lostness” drop: 38 % compared with static-signage mode.

These figures validated both performance and perceived usefulness before formal
evaluation in Chapter 7.

6.8 Implementation Challenges
1. Balancing brevity vs completeness: early prompts overshot latency

budgets; resolved by token-limit enforcement.

2. Unity WebRequest threading quirks: required explicit coroutine restarts
after long idles.

3. Audio—avatar desync under heavy GC: mitigated through pooling and
lightweight amplitude mapping.

4. Educator content workflow: built JSON validator to catch mis-tagged
biomes.

5. LAN firewall exceptions: added port permissions for Ollama API on
11434/tcp.

6.9 Summary

Implementation combined C# modular scripts with a compact Python back-end to
realize a context-aware conversational guide.

Through asynchronous design, token streaming, and intelligent caching, the
component achieved real-time responsiveness within mobile VR limits.

Each subsystem—from MuseumGuide.cs to RPMMouthFromAudio.cs—was
purpose-built for clarity, maintainability, and measurable performance, laying the
groundwork for the testing and evaluation described next.

Chapter 7 — Testing

7.1 Overview

Testing evaluated the Al Virtual Guide across four fronts:
1. Unit testing — ensuring each subsystem behaved correctly in isolation;
2. Integration testing — verifying end-to-end data and control flow;

3. Performance and comfort testing — measuring latency, frame rate, and
physiological comfort indicators;

4. Usability testing — capturing user perceptions of clarity, usefulness, and
trust.

The aim was not only functional correctness but experiential quality: how
comfortably, clearly, and consistently the guide supports learning in VR.

7.2 Testing Environment

for log analysis

Parameter Configuration

Hardware Meta Quest 3 (standalone, 8 GB RAM)

Server Intel 13" Gen Core 17-13700H / 32 GB RAM / RTX 4060
Laptop GPU (LLM + TTS services)

Software Unity 2022.3 LTS URP, Ollama v0.3.8 (Llama-3.1-8B
Q4 0), Glow-TTS 1.1

Network LAN Wi-Fi1 6, latency < 10 ms

Tools Unity Profiler, OVR Metrics Tool, Postman, Python pandas

usability)

Participants (for 8 educators + 12 students (ages 18-26)

All tests occurred in a controlled lab with even lighting, ~24 °C temperature, and

standing-space safety boundary defined by Guardian.

7.3 Unit Testing

7.3.1 Framework and Coverage

Implemented via Unity Test Runner with NUnit assertions.
Coverage goal: > 80 % of guide-specific C# code.

Test Suite Purpose Result

PromptTemplaterTests | Verify correct context—query merge; token Pass
budget <350

ContextProberTests Ensure nearestTaxon and distanceBin stable | Pass
across frame jitter

GuardrailTests Confirm uncertainty phrasing and banned- Pass
term filter

TTSQueueTests Check barge-in cancels clip < 100 ms delay Pass

LatencyTimerTests Validate mic—firstToken timing calculation | Pass

SubtitleRendererTests | Confirm chunk display and fade timings Pass
consistent

FallbackHandlerTests | Verify prebaked lines triggered under outage | Pass

Average execution time per run: 1.8 s.
Failures during early iterations mostly related to missing coroutine yields—fixed
before integration testing.

7.4 Integration Testing
7.4.1 Objectives

To verify communication among modules: Input — Context — Ollama —
Guardrail — TTS — Subtitle — Telemetry.

7.4.2 Procedures

« Simulated 50 full queries under normal LAN conditions.
o Induced failures (LLM offline, TTS down) to confirm fallbacks.
« Recorded latency timestamps from logs.

7.4.3 Results
Metric Target | Achieved (mean + SD)

Mic—First token (s) <25]231+£0.19

Full response (150-200 words) (s) | <8 6.73 £0.58

Subtitle— Audio sync (ms) <150 |117+£26
Fallback activation rate (%) <2 1.3

FPS during response >72 |73.4+£0.5
Audio underruns (%) <1 0.7

Observation: token streaming gave the strongest comfort gain; testers reported
perception of “instant” response even when full speech arrived seconds later.

7.5 Performance and Comfort Testing

7.5.1 Frame Stability

Using OVR Metrics Tool, frame times stayed within 13.4 ms avg (+0.8 ms).
No hitches observed during network spikes.
Rain FX stress test (= 350 K particles) still held 72 fps; CPU utilization = 68 %.

7.5.2 Audio Reliability

Glow-TTS produced > 99 % valid clips.
Cache hit ratio: 42 % — demonstrating efficiency of repeated line reuse.
Barge-in cancellation handled 100 % of interruptions without clicks.

7.5.3 Comfort and Motion Sickness

Participants completed 25-min sessions wearing headset heart-rate sensors.

No motion-sickness reports above level 2 on the Simulator Sickness Questionnaire
(0—10 scale).

Short subtitle chunks and absence of heavy UI motion helped maintain
equilibrium.

7.6 Usability Testing
7.6.1 Methodology

A formative pilot usability study explored perceived usefulness and interaction

naturalness.
Tasks included:

1. Ask the guide about nearest animal behaviour.

2. Follow a suggestion (““Observe how...”) and report observation.
3. Request a definition and a comparison.

4. Interrupt an answer to ask a new question.

Post-session instruments:

« System Usability Scale (SUS) — 10-item questionnaire (0—100 score).
« Open-ended interviews for qualitative feedback.

o Task completion time measured by logger.

7.6.2 Quantitative Results

Metric Mean + SD | Target
SUS Score 814+63 [>75
Task Completion (success rate) | 94 % >90 %
Avg. time to answer 6.8 s <8s
Reported “lostness” (score 0—10) | 2.1 <3
Perceived trust (0-10) 8.4 >7

Interpretation: users found the guide intuitive, quick, and credible. The small
text/audio delay window (= 2 s) was within acceptable conversational rhythm.

7.6.3 Qualitative Insights

Common themes from interviews:

Theme User Comment (summarised)

Context relevance | “It actually talks about what’s right in front of me.”

Confidence “I could tell when it wasn’t sure—it felt honest.”
Accessibility “Subtitles helped when others were talking nearby.”
Engagement “Made me notice small details, like the herd spacing.”

Improvement areas | “Sometimes the voice could pause less between chunks.”

Educators highlighted the potential for formative assessment: students naturally
asked follow-ups that revealed misconceptions.

7.7 Regression and Stress Tests

7.7.1 Regression Testing

After each code update, automated tests re-ran to ensure no latency or FPS

regressions.

Average deviation per build: <3 %.

7.7.2 Stress Scenarios

o Network delay simulation: +200 ms latency — first-token rose to 2.7 s;

still acceptable.

« Concurrent sessions: 3 headsets querying same server — no crashes, mean

latency +0.4 s.

« Rapid interrupts: 10 back-to-back barge-ins — queue remained stable, no

memory leak.

7.8 Validation Against Requirements

ms

Requirement ID Metric Result Status
R1 (Multimodal Voice & text validated Functional v
input)

R5 (Streaming output) | Token update < 150 ms Measured 117 |

pacing)

operational

R13 (Performance > | 73.4 fps avg v
72 fps)

R9 (Subtitle Contrast ratio > 4.5 : 1 V4
legibility)

P1 (Contextual Educator review confirmed v
explanations) accuracy > 90 %

P3 (User-controlled “Pause/replay” buttons v

All mandatory requirements passed; optional analytics hooks remain in beta for
educator dashboard integration.

7.9 Limitations Found During Testing

o Occasional verbosity: some answers exceeded target length; mitigated by
stricter prompt templates.

« Rare TTS lag spikes on first run; fixed by pre-warm caching.
« Subtitle flicker when switching focus rapidly; queued redraw added.

« LAN dependency: performance degrades on high-latency Wi-Fi; future
work includes portable edge server.

7.10 Summary

Testing confirmed that the Al Virtual Guide met both functional and experiential
requirements:

« Stable 72 fps rendering under active narration;
« First-token latency = 2.3 s;

o High SUS score (81 > target 75);

« Noticeable reduction in user “lostness.”

The combination of quantitative metrics and qualitative feedback demonstrates a
reliable, context-aware, and pedagogically supportive guide ready for controlled
deployment in educational VR exhibits.

Chapter 8 — Results

8.1 Overview

Results are presented in three clusters:
1. Technical performance — latency, frame stability, reliability;

2. User experience and usability — perceived usefulness, comfort, and
engagement,

3. Learning and accessibility outcomes — comprehension, curiosity, and
inclusion effects observed during pilot sessions.

Each cluster ties back to the measurable objectives defined in Chapter 1.

8.2 Technical Performance

8.2.1 Latency and Responsiveness

The system achieved average first-token latency of 2.31 + 0.19 s, comfortably
below the 2.5 s target.
Total response generation for a 150—200-word narration averaged 6.73 + 0.58 s.

Latency breakdown:

Stage Mean (s) | Std Dev
Voice capture + ASR 0.42 0.05
Context packing 0.13 0.02
Ollama token generation | 2.31 0.19
TTS synthesis 1.68 0.14
Total perceived response | 6.73 0.58

Streaming subtitles ensured users perceived activity almost instantly; 83 % of
participants said the guide “responded fast enough to feel conversational.”

8.2.2 Frame-Rate and System Stability

Across all test scenes (including particle-heavy rain FX), frame rate averaged 73.4
fps, maintaining the 72 fps comfort threshold.

Frame-time variance stayed within = 0.8 ms, meaning no perceptible stutter.

GC allocations dropped to < 0.4 KB/frame after pooling optimizations.

No crashes or soft locks occurred in 60 recorded sessions.

CPU load averaged 68 %, GPU load 56 %—ample headroom for future
complexity.

8.2.3 Reliability and Fallback Behaviour

« Fallback activation rate = 1.3 %.
« All fallback cases (LLM or TTS unavailable) recovered without user restart.
o Audio underruns < 1 %; no audible clipping.

« Error logs auto-flagged only minor transient HTTP 504s under simulated
Wi-Fi interference.

Interpretation: the architecture met all non-functional reliability targets while
preserving comfort and continuity.

8.3 User Experience and Usability

8.3.1 System Usability Scale

Mean SUS score = 81.4 + 6.3, placing the system in the Excellent category (above
80 threshold).

The highest-rated items were “I felt confident using the system” (avg 8.9/10) and
“The system responded quickly to my actions” (avg 8.7/10).

The lowest, though still positive, was “I would need support to use this system”
(3.1/10)—indicating minor onboarding friction for first-time VR users.

8.3.2 Engagement and Perceived Relevance

Survey statements rated on a 5-point Likert scale (1 = strongly disagree):

Statement Mean | SD

“The guide’s answers related to what I was looking at.” 4.7 0.4

“I enjoyed interacting with the guide.” 4.5 0.5

“The guide helped me notice details I might have missed.” | 4.6 0.5

“The voice and subtitles were easy to follow.” 4.8 0.3

These ratings show strong alignment between context awareness and engagement.

8.3.3 Qualitative Feedback

Frequent comments:
o “Felt like having a patient teacher standing nearby.”
o “Iliked that it didn t talk when I moved fast.”
o “Sometimes [wanted a shorter summary.”

Educators noted that the adaptive tone—gentle hedging, card citations—improved
trust compared to scripted voice-overs.

Overall sentiment clustered around transparency and control: users valued knowing
when the guide was “thinking” or grounding its answer.

8.4 Learning and Accessibility Qutcomes

8.4.1 Comprehension Gains

A short five-item recall quiz administered after sessions showed +22 % average
score improvement compared with control group (static signage only, n = 10).
The highest gains were in behavioural explanations (e.g., predator—prey spacing)
rather than factual recall—supporting the hypothesis that contextual narration
enhances interpretation over rote memory.

8.4.2 Curiosity and Inquiry Behaviour

System logs recorded voluntary follow-up questions.

Mean = 1.8 follow-ups per exhibit (vs. 0.6 in static narration).

Learners were 3x more likely to use comparative prompts (“How is this different
from...”)—evidence of curiosity activation.

8.4.3 Accessibility Metrics

Measure Target Achieved
Subtitle contrast ratio >4.5:1 5.1:1
Subtitle height (° visual angle) >1.2° 1.35°
Adjustable speech rate 0.85—1.15% | Met
Audio intelligibility (subjective 0—10) | > 8 8.6t0.4

Users with mild hearing difficulty rated comprehension at 9/10 with subtitles on,
confirming effective dual-channel delivery.
No participants reported text blur or motion discomfort.

8.5 Correlation Highlights

Pearson correlation between first-token latency and perceived responsiveness (n
=20): r=-0.74 (p <0.01) — confirming lower latency directly improves
subjective engagement.

SUS score moderately correlated with trust rating (r = 0.58).

No significant correlation between FPS variation and comfort beyond the 70 fps
threshold—indicating users mainly notice language delay, not frame variation.

8.6 Comparative Summary

Category Baseline (Static Al Virtual A
Signage) Guide (Improvement)
Mean recall score 63 % 85 % +22 %
Average “lostness” 54 2.1 -61 %
rating (0-10)
Mean SUS 68.2 81.4 +13.2
Avg. follow-up 0.6 1.8 X3

questions per user

Frame rate (fps) 73.8 73.4 ~—0.5 (no
impact)

These results validate both functional and pedagogical objectives: the guide
enhanced comprehension and engagement without harming performance.

8.7 Discussion Snapshot

« Context awareness mattered: relevance scores peaked when the guide
referenced nearby objects.

« Latency discipline paid off: users tolerated short generation delays when
early subtitles signalled response.

o Transparency increased trust: explicit hedging (“Scientists think...”)
improved perceived honesty.

o Accessibility design worked: dual-channel output benefited all users, not
just those with impairments.

« Remaining tension: balancing brevity and curiosity—some users wanted
“just enough,” others “tell me more.” The follow-up prompt system partially
addressed this.

8.8 Summary

Empirical results confirm the Al Virtual Guide meets its design aims:
o Technical: real-time operation at 72 fps, < 2.5 s latency.
« Experiential: SUS > 80 and high trust.
o Educational: 22 % recall improvement, tripled inquiry rate.
« Accessibility: all contrast and legibility goals achieved.

The combination of local inference, context packing, and careful UI timing
produced a guide that feels present, informative, and comfortable—evidence of
viable conversational pedagogy inside mobile VR.

Chapter 9 — Discussion

9.1 Overview

Testing confirmed that a locally hosted, context-aware conversational agent can
operate smoothly on mobile VR hardware and still feel natural to users.

The discussion below connects those findings to the project’s pedagogical intent—
learning through situated dialogue—and to the design principles drawn from prior
research.

9.2 What Worked Well

9.2.1 Context Packing and Grounded Prompts

The Context Packer — Ollama — TTS pipeline proved that even minimal scene
metadata (biome, nearby taxa, lesson node) is enough to create believable
situational dialogue.

Users repeatedly remarked that the guide “talked about what I was looking at.”
That specificity increased trust and recall, supporting the claim by Herpich et al.
(2014) that contextual relevance outweighs sheer information volume.

The JSON-based context feed also made educator auditing straightforward: every
response could be traced back to a visible set of input variables—important for
transparency in educational Al.

9.2.2 Chunked Responses and Streaming Delivery

Early prototypes with full-sentence narration felt sluggish. Token streaming—
showing 8-to-12-word subtitle bursts—shifted perception instantly.

This aligns with conversational-turn research (Holz et al., 2006): users judge
responsiveness by first feedback, not by total reply time.

The visual “typing” effect acted as an honesty signal—proof the system was alive
and attentive.

9.2.3 Multimodal Output

Dual-channel delivery (TTS + subtitles) did more than meet accessibility goals; it
reduced cognitive strain.

Participants alternated between listening and skimming, a form of dual coding that
supports memory consolidation.

Pietroni et al. (2021) predicted such multisensory redundancy would broaden
inclusion; these results confirm that benefit extends to general audiences, not only
those with impairments.

9.2.4 Transparency and Trust

Explicit hedging—phrases like “Scientists think...”—was initially inserted to
satisfy ethical guidelines but became a key trust builder.

Users described the guide as “honest” or “academic” rather than “robotic.”
This echoes Ressi and Di Marzo Friha (2025), who emphasised interpretive
transparency in GLAM settings: when visitors know where facts originate,
credibility rises.

9.2.5 Usability and Embodiment

Subtle embodiment via Ready Player Me avatar and synchronized mouth motion
was enough to sustain social presence without uncanny distraction.

The guide felt nearby yet not intrusive. That balance between co-presence and
restraint mirrors Papagiannakis et al. (2005), who found that minimal gestures
often outperform elaborate animation for educational agents.

9.3 Challenges and Tensions

9.3.1 Brevity vs Depth

Finding the right answer length remained difficult.

Some learners preferred concise definitions; others wanted expanded explanations.
A fixed word limit guaranteed comfort but sometimes truncated nuance.

Future iterations might employ adaptive length logic—using quick user signals
(“more detail”) to tune response depth dynamically.

9.3.2 Model Generalisation and Hallucination

Despite strong grounding, rare over-general statements still surfaced—especially
when users asked about extinct species absent from the Knowledge Card set.

The mitigation strategy (cite + hedge) kept these harmless, yet the issue highlights
the limits of LLMs without curated retrieval.

A hybrid model with a vector search over validated museum text could close that

gap.

9.3.3 Latency Perception

While the measured latency met numeric targets, perception proved nonlinear:
delays beyond = 2.5 s broke conversational rhythm.

Streaming helped, but future versions might overlap TTS generation with model
decoding or use speculative text prediction to hide latency entirely.

9.3.4 Context Noise and Misfires

Occasional mismatches between user gaze and context tag caused slightly off
answers (“It referred to a dinosaur behind me”).

These stemmed from Unity collider precision and can be reduced with ray-cast
weighting or eye-tracking input on newer headsets.

9.4 Integration Lessons

1. Loose coupling saved time. Each subsystem (Ollama, TTS, UI)
communicated through JSON, allowing independent debugging.

2. Educator contracts mattered. Having shared schemas for exhibit data
prevented mismatched tags—an organisational rather than technical win.

3. Telemetry turned into design feedback. Latency logs and “lostness” scores
offered empirical guidance for UI changes instead of guesswork.

4. Local inference justified itself. LAN-based Ollama maintained privacy, met
latency goals, and removed dependence on external APIs—pragmatic for
institutional deployment.

9.5 Broader Implications

9.5.1 Conversational Pedagogy in VR

This project supports the idea that VR learning benefits not from higher graphical
realism but from situated conversational scaffolding.

When users can query phenomena directly (“Why are they spaced apart?”), they
move from passive viewing to inquiry—teplicating field-trip learning dynamics
inside virtual space.

9.5.2 Design Ethics

The guide demonstrates an ethical middle ground:
« generate locally,
« disclose uncertainty,

 cite sources.
Such transparency may become standard in educational XR as institutions
demand explainable Al.

9.5.3 Scalability to Other Domains

The same pipeline—context packer + local LLM + TTS—could serve archaeology
tours, anatomy labs, or architecture walk-throughs.

Because interfaces remain modular, educators can repurpose it by swapping
Knowledge Cards and voice profiles without retraining models.

9.6 Reflection on User Experience

The qualitative pattern—users felt accompanied but not lectured—suggests a new
UX role: the contextual companion.

It neither replaces human educators nor serves as a static narrator; it fills the quiet
gaps between observation and understanding.

The strongest engagement occurred when users discovered something first, then
used the guide to confirm or extend insight—evidence that well-timed Al prompts
can amplify, not replace, curiosity.

9.7 Limitations Revisited

Even a well-tuned prototype faces structural limits:
« Language: English-only output; no multilingual synthesis yet.
« Dataset coverage: finite Knowledge Cards; rare taxa under-represented.
« Hardware constraints: local inference still needs a PC-class GPU.

« Evaluation scope: small sample size (n = 20); results indicative, not
conclusive.

These caveats frame the work as a proven concept rather than a finished museum
deployment.

9.8 Summary

The discussion highlights a core insight: spatially aware dialogue transforms VR
from spectacle to inquiry.

By blending efficient local Al with thoughtful pedagogical grounding, the
Prehistoric VR Museum achieved both performance reliability and educational
authenticity.

The experiment validates context-aware conversational guidance as a practical,
ethical, and extensible pattern for immersive learning systems.

Chapter 10 — Limitations

10.1 Overview

Every prototype balances ambition with constraint.

The Al Virtual Guide demonstrates that real-time, context-aware conversation is
feasible in standalone VR, but its scope and hardware place boundaries on
performance, coverage, and generalization.

Recognizing these limits clarifies both credibility and direction for future
iterations.

10.2 Technical Limitations

10.2.1 Hardware Dependency

Server requirement: the current implementation relies on a local PC (GPU-
accelerated) running the Ollama and TTS services.

o Although LAN latency is low, portability is reduced.

o A fully standalone Quest build would need smaller models or on-
device quantisation.

Thermal and runtime limits: long sessions (>30 min) raise headset
temperature, occasionally throttling CPU and affecting frame timing by ~1—
2 ps.

10.2.2 Model Constraints

Knowledge coverage: the Llama-3.1 model, though grounded with
Knowledge Cards, still lacks long-tail data about specific prehistoric species.

Language scope: English-only operation; translation layers not yet
integrated.

Generalisation behaviour: occasional paraphrasing or over-simplification
persists, particularly when cards are sparse.

Static context size: the Context Packer captures a snapshot rather than
continuous scene understanding; it cannot yet interpret complex dynamic
behaviours (e.g., multi-agent interactions).

10.2.3 Network Dependence

LAN requirement: the guide functions only when the headset reaches the
local Ollama server; high Wi-Fi interference increases first-token latency by
up to I s.

10.3 Pedagogical and UX Limitations

10.3.1 Evaluation Scope
« Sample size: usability testing involved 20 participants—adequate for

formative insight but insufficient for statistical generalisation.

+ Short-term measurement: comprehension gains measured immediately
post-session; long-term retention remains untested.

« Demographic bias: participants were university students; younger
audiences or museum visitors may exhibit different interaction styles.

10.3.2 Conversational Breadth

o The guide handles structured factual and explanatory queries but struggles
with abstract or emotional prompts (“Do you think dinosaurs cared for their
young?”).

« No genuine dialogue memory: each query is stateless beyond current
context.

o Turn-taking lacks prosodic nuance; users occasionally felt abrupt transitions
between TTS chunks.

10.3.3 Personalisation

« One voice model, one avatar.
« No adaptation to individual pace, prior knowledge, or interest level.
o Educator-driven lesson nodes provide scaffolding but not learner modelling.

10.4 Operational and Maintenance Limits
« Content authoring overhead: educators must create and validate JSON
Knowledge Cards manually; no integrated authoring Ul yet.

« Version control: while modular, updates to Unity or Ollama may break API
calls unless maintained in sync.

« Security perimeter: local servers reduce exposure but rely on proper LAN
configuration; data encryption and access policies still basic.

10.5 Conceptual Boundaries

o The guide aims to assist, not assess. It explains and invites inquiry but does
not grade or formally evaluate user understanding.

« It embodies situated awareness, not true sentience or adaptive pedagogy.

o The experience remains guided by human educators: Al augments
storytelling but does not replace expert interpretation.

10.6 Summary

Key limitations can be grouped as follows:

Domain | Limitation Impact

Hardware | Requires LAN-connected server | Limits portability

Model Finite knowledge & English-only | Restricts diversity of content
UX No persistent memory Reduces conversational depth
Evaluation | Small sample, short term Limits generalisability

Despite these constraints, the prototype succeeds within its defined scope—real-
time, context-aware guidance under mobile VR constraints—and establishes a
credible baseline for scaling toward richer, multilingual, and more autonomous
educational experiences.

Chapter 11 — Future Work

11.1 Overview

The Prehistoric VR Museum’s Al Virtual Guide proved that localized, context-
aware dialogue can operate smoothly inside a standalone headset. The next stage
moves from working demo to scalable educational platform. Future work spans
three fronts: technology, pedagogy, and institutional deployment.

11.2 Technical Extensions

11.2.1 Multilingual and Expressive Voices
o+ Integrate multilingual TTS using Glow-TTS-Multilang or OpenVoice to
support Sinhala, Tamil, and English.

« Enable regional voice fonts and subtle emotional tone—enthusiasm for
discoveries, calm for reflection—to match exhibit mood.

« Extend subtitle engine for bidirectional scripts and right-to-left rendering.

11.2.2 Richer Retrieval and Grounding
« Implement a retrieval-augmented generation (RAG) pipeline using a

vector database of verified museum texts.

« Embed citations directly into responses, producing clickable “learn more”
cards.

« Train lightweight classifiers to detect when a question requires factual
lookup vs. conceptual reasoning.

11.2.3 Adaptive Dialogue and Memory

« Introduce ephemeral conversation memory to preserve context across turns
within a session (“Earlier you asked about herbivores...”).

« Use reinforcement signals (user dwell time, follow-ups) to adjust verbosity
and depth dynamically.

« Explore small transformer fine-tuning on domain-specific museum dialogues
for tone consistency.

11.2.4 Edge Deployment and Offline Mode

o Package quantised LLM (< 2 B parameters) for direct Quest inference,
eliminating LAN dependency.

o Cache TTS audio for top-50 responses; fall back to text-only mode when
GPU unavailable.

« Evaluate latency and power trade-offs between local inference and remote
streaming.

11.2.5 Analytics and Educator Dashboard

« Build a secure web dashboard that aggregates telemetry logs (queries,
latency, topic heatmaps).

« Provide real-time “question queue” for educators to observe curiosity
patterns during sessions.

« Include export options compliant with institutional privacy frameworks (ISO
27701 / GDPR).

11.3 Pedagogical Enhancements

11.3.1 Curricular Integration

« Develop short formative quizzes surfaced by the guide after key interactions
(““Which feature helps the Triceratops defend itself?”).

« Allow teachers to author adaptive lesson paths that the guide can follow.

11.3.2 Collaborative Modes

« Extend single-user guide into a shared multi-user museum session where
each learner’s questions broadcast to peers.

o Experiment with “co-presence tutors”: the Al summarises group discoveries
and mediates discussion.

11.3.3 Accessibility and Inclusion

« Add sign-language avatar overlay or vibration cues for deat/hard-of-hearing
visitors.

« Offer simplified-language mode for younger audiences.

« Support haptic guidance to orient users with mobility limitations toward
points of interest.

11.4 Institutional and Research Directions

11.4.1 Scalable Deployment in Museums

Package the system as a containerised bundle (Unity App + Ollama + TTS
Docker) deployable on exhibit servers.

Provide remote update channel for new content without touching headset
firmware.

Conduct cross-site pilots (museum vs. classroom) to study contextual
learning in situ.

11.4.2 Longitudinal Studies

Track learning retention over weeks to measure durable understanding
versus novelty effect.

Examine how repeated exposure influences scientific curiosity and
vocabulary acquisition.

Collect ethical-consent telemetry for data-driven educational research.

11.4.3 Standardisation and Open Frameworks

Publish the Context Packer schema and guardrail templates under an open
license for reuse in other XR projects.

Collaborate with heritage institutions to build a shared corpus of verified
Knowledge Cards.

Define benchmarking metrics—Ilatency, trust, factuality—to compare
conversational guides across platforms.

11.5 Summary

Future work pivots from proof-of-concept to ecosystem:

Technically, make the guide portable, multilingual, and self-optimising.
Pedagogically, weave it into curricula and collaborative learning.

Institutionally, open-source its context framework to standardise ethical,
transparent conversational agents in museums.

These directions move the Prehistoric VR Museum from a single immersive
exhibit toward a living, extensible platform for experiential science education.

Chapter 12 — Individual Contribution

12.1 Overview

The Al Virtual Guide component was primarily developed and integrated by
Waynath S.P.K (IT21803420) as part of the Prehistoric VR Museum group project
for the B.Sc. (Hons) in Information Technology (Interactive Media).

This section details individual technical, design, and research responsibilities and
their alignment with project objectives.

12.2 Technical Development

12.2.1 System Architecture and Integration

« Designed the end-to-end pipeline connecting Unity, the Context Packer,
Ollama (Llama-3.1-8B), and Glow-TTS through asynchronous REST
communication.

o Implemented the MuseumGuide.cs controller script to coordinate user
input, context acquisition, model inference, and audio-text synchronisation.

o Integrated the Python TTS micro-service with caching and audio hash
look-up for efficiency.

o Configured and optimised the local Ollama environment, including model
quantisation, streaming parameters, and token budget tuning.

12.2.2 Context Awareness and Scene Logic

« Authored the ContextProber.cs subsystem that extracts biome, nearby taxa,
distance, and lesson-node data directly from the Unity scene graph.

« Established contracts between this subsystem and other team modules
(Biome Manager, ML-Agents) to ensure stable data exchange.

« Designed JSON schema for context packets and Knowledge Card look-ups.

12.2.3 Interaction and Qutput Systems

Built the VoiceTolnputFieldButton.cs speech interface with debounce and
fallback logic.

Developed the Subtitle UI for streaming token display with accessibility-
compliant scaling and colour contrast.

Implemented RPMMouthFromAudio.cs to animate Ready Player Me
avatars from audio amplitude envelopes, preserving frame rate.

Devised guardrail filters for safe-topic enforcement, hedging, and citation
tagging.

12.3 Research and Evaluation Work

Conducted literature synthesis on context-aware and situated learning
systems, drawing from sources such as Herpich (2014), Papagiannakis
(2005), and Ressi (2025).

Designed prompt templates and evaluation metrics (first-token latency,
“lostness” index, SUS).

Organised and led pilot usability sessions with 20 participants, collecting
both quantitative and qualitative data.

Analysed results using Python (pandas, matplotlib) to produce latency
graphs and engagement correlations.

Drafted all sections of the component report relating to the Al Virtual
Guide, including architecture, testing, and future work.

12.4 Collaboration and Team Context

Coordinated with environment and animation leads to ensure context tags
matched visual assets.

Shared Unity prefabs and JSON templates through version control (GitHub).

« Provided technical documentation for integration and troubleshooting to
other team members.

« Contributed to overall system testing sessions and debugging of cross-
component triggers.

12.5 Skills and Competencies Demonstrated

Category Competency

Software Asynchronous API design, performance profiling, modular

Engineering scripting

Al Integration Local LLM orchestration, TTS/ASR handling, prompt
engineering

UX Design Accessibility-focused VR interface development

Research Literature analysis, experimental design, data
interpretation

Collaboration Cross-disciplinary coordination within a multi-role project

12.6 Summary

Waynath S.P.K’s contribution centred on designing and implementing the Al
Virtual Guide subsystem—from concept and architecture through testing and
evaluation.

This work represents the core bridge between the Prehistoric VR Museum’s visual
world and its conversational intelligence, demonstrating both technical depth and
research-driven design.

Chapter 13 — Conclusion

13.1 Summary of the Component

The Al Virtual Guide for the Prehistoric VR Museum transforms a static VR
exhibit into a responsive, educational encounter.

It listens, interprets, and speaks in context—adapting explanations to what the
learner sees and does.

By combining a local large language model (Llama-3.1 via Ollama) with scene-
aware metadata and text-to-speech narration, the system bridges conversational
Al and immersive learning in real time.

Across design, implementation, and testing, the component met its primary
objectives:

« Context awareness: achieved through real-time biome and taxa tagging.
o Performance: maintained > 72 fps and < 2.5 s first-token latency.
« Usability: SUS = 81 (“Excellent”), reduced “lostness” by 61 %.

« Pedagogical impact: +22 % improvement in recall, 3% increase in follow-
up questions.

o Accessibility: dual-channel narration met WCAG AA standards.

These results validate that situated, conversational scaffolding can be implemented
within the tight power and compute limits of standalone VR.

13.2 Significance

The project demonstrates a practical pathway for contextual pedagogy in
extended reality.

Rather than treat Al as a trivia engine or detached chatbot, the guide functions as
an interpretive layer within the environment—responsive, transparent, and
educationally grounded.

It proves that local, privacy-respecting inference can match user expectations for
responsiveness while allowing institutions to retain content control.

For learners, the guide converts passive observation into inquiry.
For educators, it offers a tool to shape curiosity in real time, anchored to
scientifically validated content.

13.3 Lessons Learned

1. Responsiveness is relational. Perceived speed matters more than raw
processing time; token streaming and immediate subtitles foster trust.

2. Transparency builds credibility. Citing Knowledge Cards and hedging
uncertainty made the guide feel authentic rather than evasive.

3. Simplicity scales. Lightweight JSON context packs outperformed heavy
semantic mapping for both latency and maintainability.

4. Al needs choreography, not spectacle. Subtle timing, silence, and brevity
kept users comfortable within VR’s cognitive limits.

13.4 Outlook

The component now stands as a modular base for wider educational XR
experiences—museums, archaeology sites, biology field labs—where spatial
awareness and conversation merge.

Planned evolutions include multilingual voices, retrieval-augmented grounding,
educator dashboards, and adaptive pacing.

Each step moves toward a vision of ethical, explainable, and inclusive Al
companions that extend human teaching rather than replace it.

13.5 Closing Reflection

The Al Virtual Guide began as a technical experiment and ended as a reminder:
learning thrives when technology listens.

By embedding awareness and humility into its design—seeing before it speaks—
the guide models the same curiosity it seeks to inspire in its users.

It turns the museum from a place of observation into a space of dialogue—where
every question, however small, can spark discovery.

References

[1] J. Cimadevilla, R. Nori, L. Piccardi, Application of Virtual Reality in Spatial
Memory, 2023

[2] Vijay Kumar Chhabra, Rohit Sachdeva, Pargat Singh Garcha, VISUALIZING
THE FUTURE: AN OVERVIEW OF AR, VR, AND SPATIAL

AWARENESS IN THE DIGITAL AGE, 2024

[3] S. Papagiannakis, N. Magnenat-Thalmann, and M. D. Gross, “Mixed reality
agents as museum guides,” in Proceedings of the 2005 International Conference on
Virtual Systems and Multimedia (VSMM’05), Ghent, Belgium, 2005, pp. 304-313.
doi: 10.1109/VSMM.2005.148

[4] C. Pelachaud, 1. Poggi, and F. de Rosis, “Adaptive multimodal perception for a
virtual museum guide,” in Proc. Intelligent Virtual Agents (IVA), Springer, 2005,
pp- 409-420. doi: 10.1007/11550617 34

[5] N. D. Roussakis and E. L. Boiano, “Talking triples to museum chatbots:
Knowledge graph-driven conversational agents for cultural heritage,” in Proc.
Museums and the Web Conf., 2019, pp. 1-12.

[6] A. Ressi and B. Di Marzo Friha, “Al in GLAMs: Intelligent agents, holographic
avatars and digital twins for galleries, libraries, archives, and museums,” in Proc.
ACM CHI Conf. Human Factors in Computing Systems (CHI’25), 2025, pp. 1-10.

[7] M. Chen, G. Fei, C. Shi, and L. Wang, “Context-aware mixed reality: A
learning-based framework for semantic-level interaction,” Computer Graphics
Forum, vol. 38, no. 7, pp. 39-52, Oct. 2019. doi: 10.1111/cgf. 13792

[8] D. Sprute, P. Viertel, K. Tonnies, and M. Konig, “Learning virtual borders
through semantic scene understanding and augmented reality,” in Proc. IEEE/RSJ
Int. Conf. Intelligent Robots and Systems (IROS’19), Macau, China, Nov. 2019, pp.
8594-8601. doi: 10.1109/IROS40897.2019.8967576

[9] F. Herpich, R. Bottino, and J. C. R. da Silva, “Context-aware virtual learning
environments: A pedagogical approach with intelligent agents,” in Proc. Int. Conf.
Ubiquitous Computing and Multimedia Applications (Ubicomm’14), 2014, pp.
101-107.

[10] E. Pietroni, M. Antinucci, and F. Forlani, “Universal design in interactive
museums: Multisensory approaches and natural user interfaces,” Heritage, vol. 4,
no. 1, pp. 55-78, 2021. doi: 10.3390/heritage4010005

[11] L. Stekerova, “Chatbots in Museums: Is Visitor Experience Measured?,”
International Journal of Heritage Studies, 2022. [Online]. Available:

[12] L. Daniela, “Virtual Museums as Learning Agents,” International Journal of
Emerging Technologies in Learning (iJET), vol. 15, no. 10, pp. 4-16, 2020.
[Online]. Available:

[13] K. Bonsch, T. Blum, M. A. Otto, and M. Schneider, “User Preferences of a
Virtual Agent’s Behavior in a Museum,” in Proc. Int. Conf. on Intelligent Virtual
Agents (IVA 2021), Springer, 2021, pp. 259-268. [Online].

[14] A. Panagiotopoulos, M. Gavalas, and D. Charitos, “Virtual Humans in
Museums and Cultural Heritage Sites: A Survey of Applications, Challenges, and
Opportunities,” Applied Sciences, vol. 12, no. 19, Art. 9913, 2022. doi:
10.3390/app12199913

[15] L. Zhang, J. Chen, and Y. Sun, “Enhancing Spatial Cognition in Online Virtual
Museum Environments,” Applied Sciences, vol. 14, no. 10, Art. 4163, 2024. do1:
10.3390/app14104163

[16] P. D’ Alessandro and G. Riva, “Transformative Educational Practices in
Museums with Artificial Intelligence and Virtual Reality,” Computers, vol. 14, no.
7, Art. 257, 2025. doi: 10.3390/computers14070257

