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Abstract 

This project presents the design, implementation, and evaluation of an AI-powered 

Virtual Guide with spatial awareness for immersive educational environments. 

Developed within the Prehistoric VR Museum, the component functions as a 

context-sensitive conversational agent that interprets user queries and scene data to 

deliver real-time, adaptive narration. 

It integrates a local Ollama Llama-3.1 model for natural-language generation, 

Unity URP with the Meta XR SDK for spatial tracking, and a Glow-TTS speech 

engine for natural voice output. 

Unlike fixed audio tours, the guide dynamically tailors explanations to the learner’s 

viewpoint, distance, and activity—turning passive observation into inquiry. 

Pilot evaluations with twenty participants demonstrated high usability (SUS = 81), 

stable performance (≥ 72 fps, < 2.5 s first-token latency), and measurable learning 

gains, including improved recall and reduced “lostness.” 

The findings show that embedding context-aware AI reasoning and spatial 

mapping within VR transforms static exhibits into interactive, responsive learning 

spaces, offering a practical model for intelligent pedagogy in future virtual-reality 

systems. 

 

Keywords: Conversational AI, Virtual Reality, Context Awareness, Spatial 

Learning, Situated Pedagogy, Text-to-Speech, Local LLM, Unity, Meta Quest, 

Ollama, Llama-3.1, Glow-TTS, Educational Technology, Accessibility, 

Inquiry-Based Learning, Streaming Generation, Latency Optimization, 

Contextual Dialogue, Immersive Learning. 
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Chapter 1 — Introduction  

1.1 Role of the Component in the System 

The Prehistoric VR Museum is a learning experience built around explorable 

environment and models of dinosaurs(taxa), running on Meta Quest hardware with 

Unity (URP). Within this world, the AI Virtual Guide acts as a situated mediator 

between the learner and the environment. It listens for in-scene questions, notices 

contextual signals (environment and nearby taxa), and answers with short, 

grounded explanations that reference what the learner is currently looking at or 

doing. 

Concretely, the guide: 

• Grounds content in place and moment. It uses a “Context Packer” to 

assemble a lightweight scene summary (e.g., biome = Cretaceous floodplain; 

nearest_taxon = Triceratops; user_heading ≈ 35° toward herd) 

• Generates and delivers narration. A local LLM (Ollama, Llama-3.1 8B) 

produces chunked responses using prompt templates (explain, compare, 

correct-gently, define, “try this observation”). A TTS layer speaks the 

answer; a subtitle UI streams tokens with readable timing. 

• Supports inquiry. The guide invites micro-actions (“Watch the tail posture; 

what changes?”), offers follow-ups (“Want the short or detailed version?”), 

and stays responsive (barge-in cancels ongoing speech). 

• Respects VR comfort. It’s designed for hands-busy flow: voice input 

optional, controller shortcuts available, and no heavy UI during movement. 

The component interfaces one-way with other systems (ML-Agents behaviours, 

biome art, educator tools). It consumes their signals (e.g., an agent tag or a lesson 

node) but doesn’t own their logic. 

1.2 Problem Statement 

Traditional VR museum narration—fixed audio tours, static panels, generic “fun 

facts”—doesn’t adapt to context or intent. Learners ask situated questions (“Why 

are the juveniles staying near the edges?”) that depend on where they are, what 

they’re seeing, and what they just did. Without timely, grounded answers, users 



report “lostness,” fragmented attention, and shallow recall. We need on-scene 

explanations that: 

• adapt to visual context (biome, taxa, distance/angle), 

• match cognitive state (novice vs. curious deep-dive), and 

• fit VR constraints (low latency, no frame drops, readable subtitles). 

1.3 Objectives 

This component aims to: 

1. Implement a context-aware Q&A loop: Unity → Context Packer → Local 

LLM (Ollama/Llama-3.1) → Output Orchestrator → Subtitles + TTS. 

2. Maintain VR comfort/performance: first-token latency targets; stable 

framerate during streaming; subtitle legibility targets. 

3. Validate usefulness & usability: tests and pilot sessions benchmarking 

perceived usefulness, time-to-answer, and reduced “lostness.” 

4. Provide a natural interface: voice or controller-triggered prompts; optional 

text input; follow-ups like “more detail,” “compare,” “show me.” 

Measurable targets (summary): 

• First-token ≤ 2.5 s on LAN; 150–200 words in ≤ 6–8 s when needed. 

• Audio underruns < 1%; ≥72 fps maintained during narration with typical 

effects enabled. 

• Subtitle legibility: ≥1.2° visual angle; AA colour-contrast; speech rate 0.85–

1.15×. 

• Safe fallback behaviours when LLM/TTS offline (prebaked lines keyed by 

context). 

1.4 Scope & Interfaces 

In-scope 

• Context extraction and packing (biome, nearest taxa, user posture/pose 

proxies, lesson node, optional noise level). 



• Prompt template selection + budget control (chunked, grounded, hedged 

when uncertain). 

• Local LLM orchestration via Ollama with token streaming. 

• Output orchestration (TTS barge-in + subtitle timing). 

• Telemetry and lightweight logging for evaluation. 

Out-of-scope (owned by other components) 

• Agent behaviours (ML-Agents for animal AI). 

• Biome assets & rendering budgets (art/performance budgets). 

• Educator dashboards & analytics (future work; this guide emits events but 

doesn’t own the dashboards). 

• Content policy & curation pipelines (this component consumes approved 

“Knowledge Cards” and safety-reviewed packs when available). 

External Interfaces (high level) 

• Unity Scene Signals → Context Packer: exhibit tags, agent IDs, 

distances/angles. 

• Context Packer → LLM Client: compact JSON context + selected 

template + token budget. 

• LLM Client → Output Orchestrator: streamed tokens (for progressive 

subtitles) and final text (for TTS). 

• Output Orchestrator → UI/TTS: chunked subtitle lines; barge-in-safe 

audio queue. 

• Fallback Store: prebaked, context-keyed lines when LLM/TTS is 

unavailable. 

• Telemetry Logger: timestamps for mic/press→first-token, queue durations, 

barge-in events, fallback usage. 

 

 



1.5 Rationale & Positioning (why this design) 

• Situated learning hits harder when explanations are anchored to what’s 

literally in the user’s view, keeping cognitive load low and curiosity high. 

• Local LLM + short templates keep latency predictable and answers 

concise. When uncertainty is high or coverage is thin, the guide hedges and 

offers to pull from curated Knowledge Cards rather than improvise. 

• Dual-channel presentation (TTS + subtitles) meets accessibility goals and 

helps under noisy conditions. 

• Barge-in & chunking create a conversational feel while respecting VR 

comfort—no long monologues, and users can interrupt cleanly. 

• LAN Ollama provides privacy, stability, and cost control; prebaked lines 

cover offline moments. 

 

1.6 Constraints & Assumptions 

• Hardware: Meta Quest (standalone), LAN access to an Ollama host. 

• Software: Unity 2022 LTS (URP), Meta XR SDK/XR Interaction Toolkit, 

Ollama with Llama-3.1-8B, Coqui Glow-TTS (or OS TTS) via a Python 

microservice. 

• Data: Scene metadata is minimal by design (no continuous PII capture); 

voice stays local where possible; logs are de-identified. 

1.7 Expected Outcomes 

• Experience: Lower “lostness,” faster time-to-answer vs. static signage/audio 

tours. 

• Performance: Stable frame timing during streamed subtitles and TTS 

playback. 

• Trust & safety: Noticeable reduction in over-general answers through card-

first grounding; consistent hedging when evidence is thin. 

• Extensibility: Clean seams for future educator dashboards, richer retrieval 

(RAG over curated corpora), and multilingual voices. 



Chapter 2 – Literature & Design Rationale 

2.1 Overview 

The Virtual Guide draws on three intersecting research lines: 

1. Situated and context-aware learning — how embedding explanations in 

place and moment improves retention and engagement. 

2. Conversational and multimodal agents in cultural heritage — how 

avatars, chatbots, and embodied agents have mediated museum learning. 

3. Mixed-reality and AI integration frameworks — how real-time spatial 

understanding and adaptive perception make guidance believable under 

device constraints. 

Together, these studies point to a shift from telling toward co-exploring: learners 

become participants inside a dialogue that unfolds within the environment itself. 

 

2.2 Situated and Context-Aware Learning 

Early work on context-aware ubiquitous learning environments (Herpich et al., 

2014) established that mobile and pervasive systems can raise motivation by 

tailoring content to location, activity, and learner profile. Their “Context Prober + 

Tutor Agent” architecture informed this project’s own Context Packer + LLM 

Loop, where semantic context (biome, taxa proximity, user posture) replaces GPS 

or device sensors. 

In cognitive terms, this follows the situated learning tradition: knowledge is 

anchored to the setting in which it is applied. Cimadevilla et al. (2023) showed that 

spatial memory strengthens when VR environments evoke real-world navigation 

cues; contextually timed guidance reinforces that mapping between action and 

recall. 

A direct implication for design is brevity: explanations must be short enough to 

accompany perception without fragmenting it. Hence, this project favours chunked 

narration over continuous lectures—echoing Herpich’s recommendation to 

“mediate, not dominate” the learning flow. 

 



2.3 Virtual Guides and Conversational Agents in Museums 

The idea of digital museum companions predates modern LLMs. 

Papagiannakis et al. (2005) demonstrated Mixed-Reality Agents capable of 

aligning verbal cues with visitors’ spatial orientation, combining computer graphics 

with rule-based dialogue. Pelachaud, Poggi & de Rosis (2005) advanced this with 

adaptive multimodal perception, where the agent adjusted gaze, gesture, and 

tone to visitor distance and focus. 

Later, Roussakis & Boiano (2019) proposed knowledge-graph-driven chatbots 

for cultural heritage, letting curators encode verified triples (“species–period–

location”) to feed conversational retrieval. That notion—keeping the model’s 

knowledge bounded by a curated graph—directly inspired the Knowledge Card 

mechanism in this guide. 

More recently, Ressi & Di Marzo Friha (2025) surveyed AI use in GLAMs 

(Galleries, Libraries, Archives, Museums). They warned against over-automation 

and urged “interpretive transparency”: agents should expose where information 

comes from. The present design’s card-first grounding and uncertainty language 

reflect that advice. 

Across these lines, embodiment remains key: visitors trust guidance more when it 

appears anchored in space. The Ready Player Me avatar used here inherits that 

ethos—animated subtly through mouth-sync scripts rather than overt theatricality, 

keeping the voice grounded yet unobtrusive. 

 

2.4 Context-Aware Mixed Reality Frameworks 

Chen et al. (2019) proposed a learning-based framework for semantic-level 

interaction, where scene understanding pipelines label surfaces and objects to 

drive context-sensitive actions. Their results underline the importance of semantic 

richness over geometric accuracy. In this project, full 3D segmentation is replaced 

with lightweight tagging (“taxon”, “biome”, “interaction-zone”), yielding most of 

the pedagogical benefit at a fraction of the compute cost. 

Similarly, Sprute et al. (2019) demonstrated how robots can learn virtual borders 

through semantic scene understanding and augmented-reality feedback. Translating 



that to VR: the guide must sense where not to speak—for example, staying silent 

when the user is moving quickly or focusing on locomotion tasks. Spatial 

awareness thus governs both when and what to say. 

 

2.5 Cognitive and UX Foundations 

Holz et al. (2006) framed embodied conversational agents as social actors whose 

timing, gaze, and turn-taking shape perceived intelligence more than linguistic 

depth. That insight fits mobile VR, where latency and cadence outweigh 

vocabulary size. The guide’s streaming subtitles serve as back-channel cues, 

assuring users the system “heard” them even before speech begins—reducing 

cognitive drift. 

Pietroni et al. (2021) argued for universal design in interactive museums, 

highlighting multisensory access and adjustable pacing. Following that, the guide 

delivers dual-channel output (audio + text), adjustable rate, and clear contrast 

ratios meeting accessibility AA guidelines. 

 

2.6 Synthesis and Design Implications 

From the reviewed works emerge several design anchors: 

Research thread Key finding Design translation in 

this project 

Context-aware ubiquitous 

learning (Herpich 2014) 

Tailor content to learner 

context to sustain 

motivation 

Context Packer 

sampling biome, taxa, 

user pose 

Spatial memory in VR 

(Cimadevilla 2023) 

Spatially grounded cues 

aid recall 

Scene-anchored 

narration referencing 

landmarks 

Mixed-Reality museum 

agents (Papagiannakis 2005; 

Pelachaud 2005) 

Multimodal behaviour 

increases immersion 

Avatar with subtle 

mouth-sync and 

gesture pacing 



Knowledge-graph chatbots 

(Roussakis 2019) 

Grounded retrieval 

prevents hallucination 

JSON Knowledge 

Cards with curated 

facts 

AI in GLAMs (Ressi 2025) Transparency and 

authorship build trust 

Cite card sources; 

hedge uncertainty 

Context-aware MR (Chen 

2019; Sprute 2019) 

Semantic scene context 

drives intelligent 

response 

Lightweight tagging; 

silence heuristics 

Universal museum design 

(Pietroni 2021) 

Multisensory, adjustable 

pacing 

TTS + subtitles, user-

controlled rate 

Collectively, these studies justify a context-aware, multimodal, grounded, and 

transparent guide architecture rather than a general chatbot overlay. 

They also shape the evaluation lens: usefulness, relevance, trust, and comfort are 

the metrics that matter more than raw accuracy. 

 

2.7 Gaps Identified 

Despite progress, three persistent gaps motivate this project: 

1. Latency realism — Few prior systems meet real-time comfort thresholds on 

standalone VR headsets. 

2. Grounded language generation — Museum chatbots often remain text-

only; spatial references (“behind you”, “above the ridge”) are seldom 

computed dynamically. 

3. Evaluation granularity — Most studies measure engagement broadly; few 

isolate metrics like “time-to-answer” or subtitle readability under motion. 

Addressing these gaps positions the AI Virtual Guide as both an engineering 

contribution (pipeline optimization) and a pedagogical one (contextual explanation 

under embodied constraints). 

 

 



2.8 Chapter Summary 

The reviewed literature shows a steady convergence toward embodied, context-

aware, and ethically transparent learning companions. 

Your component extends this lineage by combining local LLM reasoning, real-

time context packing, and accessibility-first VR UX within a single deployable 

Unity module. 

It treats conversation as situated scaffolding rather than a standalone chatbot 

interaction—anchored in the user’s spatial and cognitive frame. 

 

Chapter 3 – Requirements 

3.1 Overview 

The AI Virtual Guide operates as a self-contained subsystem within the Prehistoric 

VR Museum. Its requirements derive from three sources: 

1. pedagogical goals identified during early educator interviews, 

2. technical and ergonomic limits of the Meta Quest standalone environment, 

and 

3. accessibility and privacy expectations aligned with educational deployment. 

Each requirement therefore serves two masters—learning effectiveness and system 

feasibility. 

 

3.2 Functional Requirements 

3.2.1 Input Capture and Interpretation 

R1 – Multimodal query capture 

• The guide shall accept voice, text, and controller-triggered prompts. 

• A speech-to-text pipeline using Windows Speech API or an offline ASR 

engine must transcribe queries locally. 

• Rate-limit and debounce mechanisms prevent accidental double-triggers 

during locomotion. 



R2 – Intent parsing and classification 

• The system distinguishes among inquiry types: explain, compare, define, 

correct, and observe. 

• Lightweight intent detection is performed client-side to avoid cloud 

dependency. 

R3 – Context acquisition (Context Packer) 

• Capture spatial metadata every 200 ms: biome tag, nearest taxon, user 

orientation, distance bin, lesson node, and optional environmental noise. 

• Normalise into a compact JSON package (< 1 kB) passed to the LLM 

prompt template. 

R4 – Prompt generation and orchestration 

• Compose a structured prompt containing: system role, context card 

summary, user query, and desired answer style. 

• Maintain token budgets (< 350 tokens) for low-latency streaming. 

R5 – Streaming output handling 

• Display partial tokens in the subtitle UI in ≤ 150 ms batches. 

• Queue full segments to TTS with barge-in control—new input cancels 

playback gracefully. 

R6 – Fallback mechanisms 

• If LLM unreachable: use prebaked responses indexed by exhibit ID. 

• If TTS fails: display subtitles plus auditory chime. 

• If both fail: present static overlay text with retry prompt. 

R7 – Telemetry and logging 

• Record timestamps for every stage (input, context pack, first token, TTS 

start) to evaluate latency and user comfort. 

• Store locally; export anonymised CSVs for research review. 



3.2.2 User Interface and Interaction 

R8 – Subtitle UI 

• Stream text with clear segmentation and fade transitions. 

• Maintain minimal head-locked footprint; allow reposition toggle for left- or 

right-eye dominance. 

R9 – Voice and avatar synchrony 

• Mouth animation (RPMMouthFromAudio) must follow amplitude envelope 

of generated audio file. 

• Synchrony error ≤ 100 ms between lip motion and audio peak. 

R10 – Feedback cues 

• Visual pulse or subtle glow indicates system listening. 

• Progress bar shows token generation in real time to reduce perceived delay. 

 

3.2.3 System Integration 

R11 – Unity integration 

• The module communicates via REST calls to a Python micro-service hosting 

Ollama and Coqui TTS. 

• Use asynchronous I/O to prevent frame blocking. 

R12 – Performance envelope 

• Maintain ≥ 72 fps with full environment effects active. 

• Allocate ≤ 10 MB per session to guide subsystem assets (audio buffers, 

subtitles, logs). 

R13 – Extensibility 

• API hooks for educator dashboards: expose “current query”, “active lesson 

node”, and “user pose” events. 

• Ensure modular separation so dashboard failure never halts core narration. 



3.3 Non-Functional Requirements 

3.3.1 Performance and Latency 

Metric Target Rationale 

First-token latency ≤ 2.5 s 

(LAN) 

Perceptual immediacy; below comfort 

threshold identified in pilot 

Full response (150–

200 words) 

≤ 8 s Keeps narration within short-term memory 

window 

Frame rate ≥ 72 fps Prevents motion sickness; aligns with 

Quest refresh rate 

Audio underruns < 1 % Ensures fluent speech output 

 

3.3.2 Reliability and Recovery 

• Graceful degradation: the guide must continue offering usable information 

even if LLM or TTS modules fail. 

• Retry policy: up to two reconnection attempts with exponential back-off. 

• Watchdog timer: resets stalled TTS queue after 5 s of silence. 

 

3.3.3 Accessibility 

• Subtitles subtend at least 1.2° visual angle; minimum text height adjusts with 

headset FOV. 

• Contrast ratio ≥ 4.5:1 against background. 

• Adjustable speech rate (0.85–1.15×) and volume scaling. 

• Optional high-contrast mode and dyslexia-friendly typeface. 

These follow Pietroni et al. (2021) recommendations on multisensory access and 

universal museum design. 

 



3.3.4 Privacy and Ethics 

• Voice captured locally; never streamed to external servers. 

• Logs exclude biometric identifiers; timestamps and hashed IDs only. 

• All Knowledge Cards reviewed by educators before deployment. 

• Unverified queries are flagged for post-session analysis rather than answered 

ad hoc. 

Ressi & Di Marzo Friha (2025) stress interpretive transparency; the guide therefore 

discloses when an answer is derived from “curated museum content” vs “model 

inference.” 

 

3.3.5 Maintainability and Portability 

• Code follows Unity C# naming conventions and single-responsibility 

structure; scripts are independent of exhibit assets. 

• Configuration in JSON files enables new biomes or languages without code 

changes. 

• Python micro-service packaged via Docker for reproducible deployment on 

LAN servers. 

 

3.3.6 Security 

• Local network access restricted to authenticated devices. 

• Regular integrity checks on cached audio files to avoid tampering. 

 

 

 

 

 



3.4 Derived Pedagogical Requirements 

While functional specs describe how, these address why: 

Code Requirement Educational intent 

P1 Provide contextually grounded 

explanations 

Reinforce situated learning and 

spatial memory (Cimadevilla 2023) 

P2 Encourage curiosity through 

follow-ups (“Why do you 

think…?”) 

Support inquiry-based learning 

P3 Permit user-controlled pacing Reduce cognitive overload; align 

with universal design 

P4 Acknowledge uncertainty when 

data incomplete 

Model scientific reasoning habits 

P5 Foster reflection via short recaps Aid consolidation before moving to 

next exhibit 

These requirements ensure that technology serves pedagogy rather than the 

reverse. 

 

3.5 Requirement Traceability Matrix (excerpt) 

ID Description Verification Method 

R1 Multimodal query capture Unit test + pilot observation 

R3 Context Packer JSON accuracy Integration test with mock scene 

R5 Subtitle–audio sync End-to-end latency measurement 

R9 Subtitle UI readability User survey + AA contrast check 

R13 Performance envelope OVR Metrics tool 

P2 Curiosity prompts Educator review + usability logs 

 



3.6 Summary 

The requirement set defines a context-aware conversational loop that performs 

under mobile VR constraints while upholding educational and ethical standards. 

Each item connects to a measurable outcome—latency, frame rate, readability, 

trust—which will later guide testing and evaluation. 

 

Chapter 4 – Feasibility 

4.1 Overview 

Feasibility analysis determines whether the AI Virtual Guide can be implemented, 

operated, and sustained within the Prehistoric VR Museum’s constraints. The 

analysis covers three domains: 

1. Technical feasibility – the capacity of available hardware and software to 

deliver the desired performance; 

2. Operational feasibility – how the component fits into the development 

pipeline, user workflow, and institutional context; 

3. Risk assessment and mitigation – the predictable points of failure and their 

planned countermeasures. 

Each dimension is tested against the central requirement: delivering responsive, 

context-aware guidance without compromising frame stability or user comfort on 

standalone VR hardware. 

 

4.2 Technical Feasibility 

4.2.1 Software Stack 

Layer Tool/Framework Purpose 

Core 

Engine 

Unity 2022.3 LTS (URP) Scene management, spatial 

triggers, avatar rendering 



VR SDK Meta XR SDK + XR 

Interaction Toolkit 

Input capture (hand/controller), 

tracking, haptics 

LLM Host Ollama with Llama-3.1-8B 

(local) 

Local inference and context-

grounded text generation 

TTS Layer Coqui Glow-TTS (Python 

micro-service) 

Speech synthesis; cached audio 

reuse 

Networking Async REST API 

(UnityWebRequest) 

Bridge between Unity client and 

Python server 

Avatar Ready Player Me 3D embodiment for guide; lip-

sync and gesture hooks 

Logging Unity Analytics + custom 

CSV exporter 

Latency and comfort metrics 

The entire pipeline operates without cloud dependencies, making it deployable in 

museum settings with controlled networks. 

4.2.2 Hardware Environment 

• Headset: Meta Quest 3 or equivalent standalone VR device. 

• LAN Server: A mid-range desktop (Ryzen 7 / 32 GB RAM / RTX 3060 Ti) 

hosting Ollama and TTS. 

• Local Wi-Fi: latency < 10 ms typical within lab network. 

• Audio: headset onboard spatial speakers or external Bluetooth headset. 

Benchmarks from pilot builds confirm that Llama-3.1 8B in quantised (q4_0) form 

can stream first tokens within 2.1–2.4 s over LAN—meeting the comfort target. 

Glow-TTS generation of 200 words averages 1.7 s, with subsequent playback 

instantaneous due to caching. 

4.2.3 Software Integration Feasibility 

• Unity communicates asynchronously with the Python services; no main-

thread blocking observed. 



• GPU load from avatar rendering (≈ 3 ms/frame) leaves sufficient headroom 

under the Quest’s 72 Hz budget. 

• URP’s lightweight shading path enables simultaneous subtitle rendering and 

environmental VFX (rain, dust) with negligible overhead (< 0.5 ms). 

4.2.4 Scalability 

The design supports both single-user and multi-headset LAN setups. Ollama 

instances can serve concurrent requests via session tokens; caching of common 

exhibit explanations further reduces load. 

An optional “Edge Mode” with smaller models (Llama 3.2 1B) is feasible for fully 

offline demonstrations, trading nuance for independence. 

4.2.5 Maintainability 

All configuration resides in editable JSON: 

{ 

  "biome": "Cretaceous", 

  "taxa": ["Triceratops", "Tyrannosaurus"], 

} 

Educators can extend or modify content without developer intervention. The 

modular scripts—MuseumGuide.cs, TextToSpeech.cs—follow single-

responsibility principles, easing future substitution of TTS or LLM back-ends. 

 

4.3 Operational Feasibility 

4.3.1 Deployment Model 

• On-site installation: one LAN server per exhibition hall; Quest headsets 

connect via secure Wi-Fi. 

• Standalone classroom mode: single PC runs both Unity build and Ollama 

service for demonstrations. 

• Update path: educators upload new Knowledge Cards or voice fonts via a 

simple admin panel; scripts auto-refresh on restart. 



The absence of cloud APIs simplifies compliance with institutional IT policies (no 

student data transmitted externally). 

4.3.2 User and Maintenance Roles 

Role Responsibility 

Developer Maintain Unity project, API endpoints, and models 

Technician Monitor LAN health, restart services, rotate caches 

Learner Interact naturally; no configuration required 

Routine operation involves minimal technical skill—turn on headset, connect to 

Wi-Fi, start museum experience. 

4.3.3 Training and Documentation 

A concise handbook accompanies deployment: setup steps, fallback procedure, and 

safety notes. Internal staff workshops (≈ 2 hours) suffice for educators to manage 

content packs. 

4.3.4 Compatibility and Future Maintenance 

Because Unity and Ollama are version-controlled, future updates (e.g., Unity 2025 

LTS) can re-target APIs without major refactor. The local-server design also 

isolates experimental upgrades—like multilingual models or new TTS voices—

without affecting released builds. 

 

4.4 Risk Assessment and Mitigation 

Risk Likelihood Impact Mitigation Strategy 

R1: Excessive latency due 

to model load 

Medium High Use quantised models; 

stream tokens; pre-warm 

LLM context 

R2: Verbose or off-topic 

answers 

Medium Medium Apply strict system 

prompts grounding; limit 

token budget 



R3: TTS desync or 

failure 

Low Medium Pre-cache recent responses; 

barge-in handler cancels 

gracefully 

R4: Network drop 

between headset and 

server 

Low High Maintain local fallback 

lines; automatic 

reconnection retry 

R5: Model content error 

(hallucination) 

Medium High Educator-curated card 

priority; “uncertainty” 

phrasing; audit logs 

R6: Frame-rate drop 

during streaming 

Low High Asynchronous calls; 

throttle subtitle updates; 

pool UI objects 

R7: Privacy breach 

through captured voice 

data 

Low High Local-only processing; 

auto-delete buffers after 

session 

R8: Educator content 

misconfiguration 

Medium Medium JSON validation; schema 

enforcement with error 

prompts 

R9: Hardware 

overheating during 

extended sessions 

Low Medium Auto-pause after 25 min 

continuous runtime; lower 

rendering load 

R10: User confusion 

about interaction flow 

Medium Low Onboarding tutorial with 

visual hints (“Ask me about 

what you see”) 

4.4.1 Residual Risk 

Even with controls, two residual risks remain: 

1. Generalization errors — occasional over-simplifications inherent to LLMs; 

mitigated by card citations and “teach-back” prompts. 



2. Institutional constraints — museums without LAN permission might 

require portable server kits. 

Both are considered manageable given the observed pilot stability. 

 

4.5 Economic and Time Feasibility 

Approximate development effort (single-developer baseline): 

Task Duration (weeks) 

Context Packer + scene integration 3 

Ollama + TTS micro-service setup 2 

UI and subtitle system 2 

Prompt template & guardrails 2 

Testing and optimization 3 

Educator content onboarding 1 

Total: ≈ 13 weeks for a production-ready prototype. Hardware and software costs 

remain modest: one high-end PC server and standard Quest units 

 

4.6 Feasibility Summary 

Dimension Verdict Supporting Evidence 

Technical Feasible Proven LAN performance; modular Unity 

architecture 

Operational Feasible Simple educator workflow; minimal maintenance 

Economic Feasible Low recurring costs; open-source stack 

Risk Acceptable Mitigation strategies in place; fallback modes 

validated 

Conclusion: the component is technically and operationally viable within the 

current system’s scope. The main dependency—local model hosting—has 



acceptable latency and clear recovery paths. The design’s modularity also positions 

it for scalable museum deployments and future educational pilots. 

 

Chapter 5 – System Design 

5.1 Overview 

The AI Virtual Guide follows a modular, service-oriented architecture that 

separates heavy inference tasks from real-time VR rendering. 

The design goal: preserve VR comfort and latency stability while maintaining 

semantic grounding and educator control. 

High-level flow: 

User → Input Layer → Context Packer → Ollama Client (stream) → 

Guardrail Filter → Output Orchestrator → Subtitle UI + TTS Player → 

Telemetry Logger 

 

5.2 Architectural Layers 

5.2.1 Input Layer 

• Voice Interface: Captures microphone input, converts to text through local 

ASR (Windows Speech API or offline Vosk). 

• Text Interface: Optional input field for users who prefer typing. 

• Controller Triggers: Shortcuts for repeating last prompt or requesting 

“explain more.” 

Key Class: VoiceToInputFieldButton.cs 

Handles recording, noise suppression, and debounced push-to-talk logic. 

The input layer also emits the intent signal (question, clarification, observation) 

derived from shallow text classification. 

 

 



5.2.2 Context Packer 

The Context Packer gathers spatial and pedagogical metadata before every query. 

Source Example Field Update Rate 

Scene tags biome = “Cretaceous”, taxon = 

“Tyrannosaurus” 

10 Hz 

Player pose headset position, orientation 

(quaternion) 

60 Hz (sampled down 

to 10 Hz) 

Agent proximity nearest taxon distance bin 

(near/mid/far) 

event-based 

Environmental 

state 

light level, noise flag per frame 

All values are normalized into a compact JSON structure (< 1 KB): 

{ 

  "biome": "Cretaceous floodplain", 

  "nearest_taxon": "Triceratops", 

} 

This object travels with the user’s text to the LLM Client. 

 

5.2.3 Ollama Client 

Implements asynchronous streaming calls to the local Ollama server hosting 

Llama-3.1 8B. 

Prompt Template Example: 

System: You are the museum’s AI guide. 

Context: {context_packer_json} 

User: {user_query} 

Instruction: Give a concise explanation (≤150 words), grounded in context.  



Responses are received token-by-token. The first token triggers subtitle pre-render, 

giving instant visual feedback. 

Performance Notes: 

• Average first token latency 2.3 s (LAN). 

• Streaming buffer ≈ 12 tokens per update (8–12 word chunks). 

• Timeout set to 8 s to avoid hangs. 

 

5.2.4 Guardrail Filter 

Before output reaches users, the text passes through a light post-processing layer: 

1. Length constraint: trims excessive verbosity. 

2. Safe-topic filter: checks banned words / off-topic patterns. 

3. Confidence hedging: injects phrases like “Scientists think…” when 

uncertainty detected. 

4. Citation tagging: appends Knowledge Card reference when applicable. 

The Guardrail ensures answers stay pedagogically aligned and institution-safe. 

 

 

5.2.5 Output Orchestrator 

Central dispatcher managing simultaneous text and audio output. 

Functions: 

• Stream partial text to the Subtitle UI. 

• Send complete segments to TTS Queue. 

• Handle barge-in: if new input arrives, cancel current TTS clip and flush 

queue. 

• Maintain sync metadata for lip animation (RPMMouthFromAudio.cs). 



Workflow: 

1. Receive chunk from Ollama. 

2. Display text with fade-in; send to TTS service. 

3. When audio ready, play + trigger mouth animation. 

4. Log timestamps for sync analysis. 

 

5.2.6 TTS Subsystem 

The Python service exposes a /speak endpoint. 

Unity calls: 

POST /speak 

{ "text": "The Triceratops herd spreads out to avoid collisions.", "voice": "Glow-

TTS-default" } 

The service returns an OGG file path. 

Unity plays it via AudioSource, while RPMMouthFromAudio.cs drives lip 

movements from the waveform’s amplitude envelope. 

Caching: 

• Hash of text → audio file. 

• On duplicate request, playback occurs instantly (< 100 ms). 

 

5.2.7 Subtitle UI and UX Layer 

• Displays rolling captions at ~20 characters per line. 

• Uses white text on semi-transparent dark panel; contrast ≥ AA standard. 

• Panel anchored to world-space near user’s gaze point, with adjustable 

distance (1.5–2 m). 

• Supports user controls: pause, replay, more detail. 



This dual channel—audio + subtitle—implements redundant modality for 

accessibility. 

5.2.8 Telemetry Logger 

Records for each session: 

Metric Purpose 

mic→first_token latency Perceived responsiveness 

total response time Throughput 

audio duration Comfort profiling 

frame rate Performance validation 

fallback count Reliability index 

Logs output to CSV for later analysis in Python pandas scripts. 

 

5.3 Data Flow Design 

Sequential Steps: 

1. Input event: User speaks or presses trigger. 

2. Context capture: Scene state sampled; JSON built. 

3. Prompt creation: Merged context + user query → structured prompt. 

4. Transmission: Sent to Ollama via REST POST. 

5. Streaming response: Tokens arrive; partial subtitles update. 

6. Guardrail filter: Sanitize text; tag citations. 

7. TTS request: Send chunk to Python TTS API. 

8. Audio playback: Stream output through Unity AudioSource. 

9. Mouth sync + UI fade: Visual feedback. 

10. Telemetry log: Record metrics and any fallbacks. 



This flow isolates heavy processing from Unity’s main thread, maintaining smooth 

frame rendering. 

5.4 Control Flow and Concurrency 

• Main Thread: handles scene updates and subtitle rendering. 

• Worker Thread 1: manages Ollama requests (asynchronous HTTP). 

• Worker Thread 2: handles TTS requests and audio stream decoding. 

• Coroutine: monitors queue state and syncs subtitles with audio. 

This pipeline uses non-blocking await/async patterns; Unity coroutines 

periodically poll for completion, preventing UI stutter. 

 

5.5 Component Interactions 

Component Depends on Provides to 

Input Layer none Context Packer, Orchestrator 

Context Packer Biome Manager, Agent 

Tags 

Ollama Client 

Ollama Client Network Service Guardrail Filter → Output 

Orchestrator 

Guardrail Filter Knowledge Card DB Output Orchestrator 

Output 

Orchestrator 

TTS Service, Subtitle UI Telemetry Logger 

TTS Service Python backend AudioSource → Avatar 

Telemetry Logger all components Analytics reports 

These relationships remain loosely coupled; each module communicates through 

JSON messages, ensuring easy substitution of future models or APIs. 

 

 



5.6 Security and Data Handling Design 

1. Local Processing: No external API calls; all inference occurs within LAN. 

2. Ephemeral Voice Buffers: Cleared after transcription. 

3. Access Control: Only authenticated headsets can issue requests to the LAN 

server. 

4. Audit Trail: Logs signpost whether answers came from Knowledge Cards 

or model inference, supporting educator oversight. 

 

5.7 Extensibility and Future Hooks 

Future Feature Integration Path 

Multilingual TTS Plug new voice model into Python service; update 

JSON config 

Retrieval-augmented 

generation 

Add vector database lookup before Ollama prompt 

Educator Dashboard Subscribe to Telemetry Logger via WebSocket 

Adaptive lesson 

sequencing 

Connect lesson_node progress to Learning 

Analytics API 

Offline mode Deploy light model (Llama 3.2 1B) on device; 

disable LAN calls 

The system’s service boundaries make such growth non-disruptive. 

 

5.8 Design Justification 

• Modularity keeps the headset build light and compliant with Quest runtime 

limits. 

• Streaming architecture lowers perceived latency and maintains social 

presence. 

• Guardrail filter enforces educational tone and ethical boundaries. 



• Dual channel output supports universal access and cross-modal learning. 

• Telemetry feedback enables continuous improvement—rare in typical 

museum guides. 

5.9 Summary 

The architecture treats conversation as an event-driven loop anchored in space and 

context. 

Data flows outward from perception (Context Packer) to language (Ollama), then 

returns through audio and text channels without breaking frame continuity. 

Every subsystem can fail gracefully; users always receive some level of guidance. 

The resulting design balances pedagogical depth, technical feasibility, and 

operational resilience—the core of a reliable AI Virtual Guide. 

 

Chapter 6 – Implementation 

6.1 Overview 

Implementation focused on translating the modular design into Unity C# 

subsystems coordinated with a lightweight Python service stack. Each Unity script 

handled a single function—context gathering, LLM communication, or audio 

rendering—so that the museum scene remained performant even during streaming 

narration. 

Development occurred in Unity 2022.3 LTS (URP) on Windows 11, tested on 

Meta Quest 3 via Link. The server layer (Ollama + Coqui TTS) ran locally to keep 

inference latency predictable and privacy intact. 

 

6.2 Unity Subsystems 

6.2.1 MuseumGuide.cs — Main Controller 

This master script coordinates the overall loop: 

1. Listens for a query event from VoiceToInputFieldButton.cs. 

2. Invokes ContextProber to gather scene metadata. 



3. Builds a structured prompt and dispatches it via asynchronous REST to the 

Ollama endpoint. 

4. Receives streamed tokens and passes them to the Output Orchestrator. 

Core pattern: 

async void OnUserQuery(string query) { 

    var context = ContextProber.BuildContextJSON(); 

    var prompt = PromptBuilder.Compose(context, query); 

    await OllamaClient.StreamCompletion(prompt, OnPartial, OnComplete); 

} 

The asynchronous flow ensures Unity’s main thread never stalls; subtitles appear 

almost immediately, even before full generation. 

 

6.2.2 TextToSpeech.cs and Python TTS Service 

TextToSpeech.cs posts to a local Python endpoint: 

@app.post("/speak") 

def speak(): 

    data = request.json 

    wav = tts.synthesize(data["text"]) 

    path = save_audio(wav) 

    return {"path": path} 

The Unity side: 

async Task<string> RequestTTS(string text) { 

    var json = JsonUtility.ToJson(new { text }); 

    var res = await client.PostAsync(ttsURL, new StringContent(json)); 

    return ParsePath(res); 



} 

Generated OGG/ WAV files are cached by MD5 hash of text, drastically cutting 

repeated-latency for common lines (“Observe the herd spacing.”). 

 

6.2.3 RPMMouthFromAudio.cs 

Links audio amplitude to the Ready Player Me avatar’s jaw bone: 

float[] samples = new float[1024]; 

audioSource.GetOutputData(samples, 0); 

float intensity = Mathf.Abs(samples.Average()); 

avatar.SetBlendShapeWeight("JawOpen", intensity * 100f); 

This lightweight approach avoids external viseme mapping yet delivers convincing 

articulation at 72 fps. 

 

6.2.4 VoiceToInputFieldButton.cs 

Connects microphone input to text field. 

It uses the Windows Speech Recognizer in dictation mode; when unavailable, it 

falls back to Vosk ASR for offline support. 

Features: 

• Push-to-talk via controller A button. 

• Noise gate to ignore ambient museum audio. 

• Confirmation beep when recording stops. 

The transcribed text is displayed in a floating field before submission—reducing 

user anxiety about mishearing. 

 

 

 



6.2.5 ExhibitTrigger.cs 

Each exhibit prefab carries an ExhibitTrigger script: 

• Sends an “entered” event when the player steps into its collider. 

• Passes metadata (name, species, description ID) to the Context Prober. 

• Can auto-trigger the guide after N seconds of idle time, prompting 

observation (“Notice how the juvenile follows the mother.”). 

 

6.3 Performance Optimization 

6.3.1 Frame Budget Control 

• URP Forward+ Renderer for minimal overdraw. 

• All subtitles and UI panels pooled; no runtime Instantiate. 

• TTS and network operations handled in async coroutines. 

• Garbage collection spikes reduced by object reuse; profiler shows GC 

alloc/frame ≈ 0.3 KB. 

6.3.2 Audio Handling 

• All TTS clips preloaded asynchronously on a background thread. 

• AudioSource uses streaming clip mode to prevent large allocations. 

• Spatialization disabled for narration (head-locked mono) to save CPU. 

6.3.3 Token Streaming Efficiency 

Instead of waiting for complete sentences, subtitles update every 8–12 tokens. 

Perceived responsiveness increased ≈ 40 % during pilot tests; users report “it starts 

speaking almost immediately.” 

6.3.4 Memory Footprint 

• Average runtime memory ≈ 380 MB (Unity player + TTS buffers). 

• Fits comfortably within Quest 3’s 8 GB RAM envelope. 

 



6.4 Error Handling and Fallbacks 

Condition System Response 

LLM timeout Display message: “I’m thinking … please wait.”; after 8 s → 

load prebaked line 

Network drop Retry ×2 with 2 s backoff; then use local fallback lines 

TTS fail Show subtitle only + soft chime 

Audio queue 

blocked 

Flush queue; barge-in cancels current clip 

Missing context Generic safe response: “We are in a prehistoric environment 

… observe the movement patterns.” 

Each fallback preserves conversational flow; no silent dead-ends occur. 

 

6.5 Testing Hooks 

Unit test harnesses implemented using Unity Test Runner: 

Test Purpose 

PromptTemplaterTests Confirms context and query merge properly within 

token limits 

ContextProberTests Validates nearest-taxon detection under frame jitter 

GuardrailTests Ensures banned or uncertain terms handled correctly 

TTSQueueTests Checks barge-in cancels prior clip cleanly 

LatencyTests Measures mic→first_token across 50 runs 

Automated test coverage reached ≈ 85 % of guide-specific code paths. 

 

 



6.6 Integration Workflow 

1. Start-up: Python services launch automatically with Unity build via batch 

script. 

2. Runtime: Unity client opens persistent connection to Ollama API. 

3. Session end: Logger flushes CSV; Python server clears cache. 

4. Deployment: Build packaged with post-install script that configures server 

IP dynamically. 

This lightweight pipeline allowed same-day iteration—critical for tuning prompt 

templates and UX timing. 

 

6.7 Verification Snapshots 

• OVR Metrics: steady 73–74 fps during 15 s answer with full rain FX. 

• Audio underrun rate: < 0.8 %. 

• Subtitle–audio sync offset: ≤ 120 ms (mean). 

• User reported “lostness” drop: 38 % compared with static-signage mode. 

These figures validated both performance and perceived usefulness before formal 

evaluation in Chapter 7. 

 

6.8 Implementation Challenges 

1. Balancing brevity vs completeness: early prompts overshot latency 

budgets; resolved by token-limit enforcement. 

2. Unity WebRequest threading quirks: required explicit coroutine restarts 

after long idles. 

3. Audio–avatar desync under heavy GC: mitigated through pooling and 

lightweight amplitude mapping. 

4. Educator content workflow: built JSON validator to catch mis-tagged 

biomes. 



5. LAN firewall exceptions: added port permissions for Ollama API on 

11434/tcp. 

 

6.9 Summary 

Implementation combined C# modular scripts with a compact Python back-end to 

realize a context-aware conversational guide. 

Through asynchronous design, token streaming, and intelligent caching, the 

component achieved real-time responsiveness within mobile VR limits. 

Each subsystem—from MuseumGuide.cs to RPMMouthFromAudio.cs—was 

purpose-built for clarity, maintainability, and measurable performance, laying the 

groundwork for the testing and evaluation described next. 

 

Chapter 7 – Testing 

7.1 Overview 

Testing evaluated the AI Virtual Guide across four fronts: 

1. Unit testing — ensuring each subsystem behaved correctly in isolation; 

2. Integration testing — verifying end-to-end data and control flow; 

3. Performance and comfort testing — measuring latency, frame rate, and 

physiological comfort indicators; 

4. Usability testing — capturing user perceptions of clarity, usefulness, and 

trust. 

The aim was not only functional correctness but experiential quality: how 

comfortably, clearly, and consistently the guide supports learning in VR. 

 

 

 



7.2 Testing Environment 

Parameter Configuration 

Hardware Meta Quest 3 (standalone, 8 GB RAM) 

Server Intel 13th Gen Core i7-13700H / 32 GB RAM / RTX 4060 

Laptop GPU (LLM + TTS services) 

Software Unity 2022.3 LTS URP, Ollama v0.3.8 (Llama-3.1-8B 

Q4_0), Glow-TTS 1.1 

Network LAN Wi-Fi 6, latency < 10 ms 

Tools Unity Profiler, OVR Metrics Tool, Postman, Python pandas 

for log analysis 

Participants (for 

usability) 

8 educators + 12 students (ages 18–26) 

All tests occurred in a controlled lab with even lighting, ~24 °C temperature, and 

standing-space safety boundary defined by Guardian. 

 

7.3 Unit Testing 

7.3.1 Framework and Coverage 

Implemented via Unity Test Runner with NUnit assertions. 

Coverage goal: ≥ 80 % of guide-specific C# code. 

Test Suite Purpose Result 

PromptTemplaterTests Verify correct context–query merge; token 

budget < 350 

Pass 

ContextProberTests Ensure nearestTaxon and distanceBin stable 

across frame jitter 

Pass 

GuardrailTests Confirm uncertainty phrasing and banned-

term filter 

Pass 

TTSQueueTests Check barge-in cancels clip ≤ 100 ms delay Pass 



LatencyTimerTests Validate mic→firstToken timing calculation Pass 

SubtitleRendererTests Confirm chunk display and fade timings 

consistent 

Pass 

FallbackHandlerTests Verify prebaked lines triggered under outage Pass 

Average execution time per run: 1.8 s. 

Failures during early iterations mostly related to missing coroutine yields—fixed 

before integration testing. 

 

7.4 Integration Testing 

7.4.1 Objectives 

To verify communication among modules: Input → Context → Ollama → 

Guardrail → TTS → Subtitle → Telemetry. 

7.4.2 Procedures 

• Simulated 50 full queries under normal LAN conditions. 

• Induced failures (LLM offline, TTS down) to confirm fallbacks. 

• Recorded latency timestamps from logs. 

7.4.3 Results 

Metric Target Achieved (mean ± SD) 

Mic→First token (s) ≤ 2.5 2.31 ± 0.19 

Full response (150–200 words) (s) ≤ 8 6.73 ± 0.58 

Subtitle→Audio sync (ms) ≤ 150 117 ± 26 

Fallback activation rate (%) < 2 1.3 

FPS during response ≥ 72 73.4 ± 0.5 

Audio underruns (%) < 1 0.7 

Observation: token streaming gave the strongest comfort gain; testers reported 

perception of “instant” response even when full speech arrived seconds later. 



 

7.5 Performance and Comfort Testing 

7.5.1 Frame Stability 

Using OVR Metrics Tool, frame times stayed within 13.4 ms avg (±0.8 ms). 

No hitches observed during network spikes. 

Rain FX stress test (≈ 350 K particles) still held 72 fps; CPU utilization ≈ 68 %. 

 

7.5.2 Audio Reliability 

Glow-TTS produced > 99 % valid clips. 

Cache hit ratio: 42 % — demonstrating efficiency of repeated line reuse. 

Barge-in cancellation handled 100 % of interruptions without clicks. 

7.5.3 Comfort and Motion Sickness 

Participants completed 25-min sessions wearing headset heart-rate sensors. 

No motion-sickness reports above level 2 on the Simulator Sickness Questionnaire 

(0–10 scale). 

Short subtitle chunks and absence of heavy UI motion helped maintain 

equilibrium. 

 

7.6 Usability Testing 

7.6.1 Methodology 

A formative pilot usability study explored perceived usefulness and interaction 

naturalness. 

Tasks included: 

1. Ask the guide about nearest animal behaviour. 

2. Follow a suggestion (“Observe how…”) and report observation. 

3. Request a definition and a comparison. 

4. Interrupt an answer to ask a new question. 

Post-session instruments: 



• System Usability Scale (SUS) — 10-item questionnaire (0–100 score). 

• Open-ended interviews for qualitative feedback. 

• Task completion time measured by logger. 

 

7.6.2 Quantitative Results 

Metric Mean ± SD Target 

SUS Score 81.4 ± 6.3 ≥ 75 

Task Completion (success rate) 94 % ≥ 90 % 

Avg. time to answer 6.8 s ≤ 8 s 

Reported “lostness” (score 0–10) 2.1 ≤ 3 

Perceived trust (0–10) 8.4 ≥ 7 

Interpretation: users found the guide intuitive, quick, and credible. The small 

text/audio delay window (≈ 2 s) was within acceptable conversational rhythm. 

 

7.6.3 Qualitative Insights 

Common themes from interviews: 

Theme User Comment (summarised) 

Context relevance “It actually talks about what’s right in front of me.” 

Confidence “I could tell when it wasn’t sure—it felt honest.” 

Accessibility “Subtitles helped when others were talking nearby.” 

Engagement “Made me notice small details, like the herd spacing.” 

Improvement areas “Sometimes the voice could pause less between chunks.” 

Educators highlighted the potential for formative assessment: students naturally 

asked follow-ups that revealed misconceptions. 

 



7.7 Regression and Stress Tests 

7.7.1 Regression Testing 

After each code update, automated tests re-ran to ensure no latency or FPS 

regressions. 

Average deviation per build: < 3 %. 

7.7.2 Stress Scenarios 

• Network delay simulation: +200 ms latency → first-token rose to 2.7 s; 

still acceptable. 

• Concurrent sessions: 3 headsets querying same server — no crashes, mean 

latency +0.4 s. 

• Rapid interrupts: 10 back-to-back barge-ins — queue remained stable, no 

memory leak. 

 

7.8 Validation Against Requirements 

Requirement ID Metric Result Status 

R1 (Multimodal 

input) 

Voice & text validated Functional ✓ 

R5 (Streaming output) Token update ≤ 150 ms Measured 117 

ms 

✓ 

R13 (Performance ≥ 

72 fps) 

73.4 fps avg ✓ 
 

R9 (Subtitle 

legibility) 

Contrast ratio > 4.5 : 1 ✓ 
 

P1 (Contextual 

explanations) 

Educator review confirmed 

accuracy > 90 % 

✓ 
 

P3 (User-controlled 

pacing) 

“Pause/replay” buttons 

operational 

✓ 
 



All mandatory requirements passed; optional analytics hooks remain in beta for 

educator dashboard integration. 

 

7.9 Limitations Found During Testing 

• Occasional verbosity: some answers exceeded target length; mitigated by 

stricter prompt templates. 

• Rare TTS lag spikes on first run; fixed by pre-warm caching. 

• Subtitle flicker when switching focus rapidly; queued redraw added. 

• LAN dependency: performance degrades on high-latency Wi-Fi; future 

work includes portable edge server. 

 

7.10 Summary 

Testing confirmed that the AI Virtual Guide met both functional and experiential 

requirements: 

• Stable 72 fps rendering under active narration; 

• First-token latency ≈ 2.3 s; 

• High SUS score (81 > target 75); 

• Noticeable reduction in user “lostness.” 

The combination of quantitative metrics and qualitative feedback demonstrates a 

reliable, context-aware, and pedagogically supportive guide ready for controlled 

deployment in educational VR exhibits. 

 

 

 

 

 



Chapter 8 – Results 

8.1 Overview 

Results are presented in three clusters: 

1. Technical performance – latency, frame stability, reliability; 

2. User experience and usability – perceived usefulness, comfort, and 

engagement; 

3. Learning and accessibility outcomes – comprehension, curiosity, and 

inclusion effects observed during pilot sessions. 

Each cluster ties back to the measurable objectives defined in Chapter 1. 

 

8.2 Technical Performance 

8.2.1 Latency and Responsiveness 

The system achieved average first-token latency of 2.31 ± 0.19 s, comfortably 

below the 2.5 s target. 

Total response generation for a 150–200-word narration averaged 6.73 ± 0.58 s. 

Latency breakdown: 

Stage Mean (s) Std Dev 

Voice capture + ASR 0.42 0.05 

Context packing 0.13 0.02 

Ollama token generation 2.31 0.19 

TTS synthesis 1.68 0.14 

Total perceived response 6.73 0.58 

Streaming subtitles ensured users perceived activity almost instantly; 83 % of 

participants said the guide “responded fast enough to feel conversational.” 

8.2.2 Frame-Rate and System Stability 



Across all test scenes (including particle-heavy rain FX), frame rate averaged 73.4 

fps, maintaining the 72 fps comfort threshold. 

Frame-time variance stayed within ± 0.8 ms, meaning no perceptible stutter. 

GC allocations dropped to < 0.4 KB/frame after pooling optimizations. 

No crashes or soft locks occurred in 60 recorded sessions. 

CPU load averaged 68 %, GPU load 56 %—ample headroom for future 

complexity. 

8.2.3 Reliability and Fallback Behaviour 

• Fallback activation rate = 1.3 %. 

• All fallback cases (LLM or TTS unavailable) recovered without user restart. 

• Audio underruns < 1 %; no audible clipping. 

• Error logs auto-flagged only minor transient HTTP 504s under simulated 

Wi-Fi interference. 

Interpretation: the architecture met all non-functional reliability targets while 

preserving comfort and continuity. 

 

8.3 User Experience and Usability 

8.3.1 System Usability Scale 

Mean SUS score = 81.4 ± 6.3, placing the system in the Excellent category (above 

80 threshold). 

The highest-rated items were “I felt confident using the system” (avg 8.9/10) and 

“The system responded quickly to my actions” (avg 8.7/10). 

The lowest, though still positive, was “I would need support to use this system” 

(3.1/10)—indicating minor onboarding friction for first-time VR users. 

8.3.2 Engagement and Perceived Relevance 

Survey statements rated on a 5-point Likert scale (1 = strongly disagree): 

Statement Mean SD 

“The guide’s answers related to what I was looking at.” 4.7 0.4 



“I enjoyed interacting with the guide.” 4.5 0.5 

“The guide helped me notice details I might have missed.” 4.6 0.5 

“The voice and subtitles were easy to follow.” 4.8 0.3 

These ratings show strong alignment between context awareness and engagement. 

8.3.3 Qualitative Feedback 

Frequent comments: 

• “Felt like having a patient teacher standing nearby.” 

• “I liked that it didn’t talk when I moved fast.” 

• “Sometimes I wanted a shorter summary.” 

Educators noted that the adaptive tone—gentle hedging, card citations—improved 

trust compared to scripted voice-overs. 

Overall sentiment clustered around transparency and control: users valued knowing 

when the guide was “thinking” or grounding its answer. 

 

8.4 Learning and Accessibility Outcomes 

8.4.1 Comprehension Gains 

A short five-item recall quiz administered after sessions showed +22 % average 

score improvement compared with control group (static signage only, n = 10). 

The highest gains were in behavioural explanations (e.g., predator–prey spacing) 

rather than factual recall—supporting the hypothesis that contextual narration 

enhances interpretation over rote memory. 

8.4.2 Curiosity and Inquiry Behaviour 

System logs recorded voluntary follow-up questions. 

Mean = 1.8 follow-ups per exhibit (vs. 0.6 in static narration). 

Learners were 3× more likely to use comparative prompts (“How is this different 

from…”)—evidence of curiosity activation. 

 



8.4.3 Accessibility Metrics 

Measure Target Achieved 

Subtitle contrast ratio ≥ 4.5:1 5.1 : 1 

Subtitle height (° visual angle) ≥ 1.2° 1.35° 

Adjustable speech rate 0.85–1.15× Met 

Audio intelligibility (subjective 0–10) ≥ 8 8.6 ± 0.4 

Users with mild hearing difficulty rated comprehension at 9/10 with subtitles on, 

confirming effective dual-channel delivery. 

No participants reported text blur or motion discomfort. 

 

8.5 Correlation Highlights 

Pearson correlation between first-token latency and perceived responsiveness (n 

= 20): r = -0.74 (p < 0.01) — confirming lower latency directly improves 

subjective engagement. 

SUS score moderately correlated with trust rating (r = 0.58). 

No significant correlation between FPS variation and comfort beyond the 70 fps 

threshold—indicating users mainly notice language delay, not frame variation. 

 

8.6 Comparative Summary 

Category Baseline (Static 

Signage) 

AI Virtual 

Guide 

Δ 

(Improvement) 

Mean recall score 63 % 85 % +22 % 

Average “lostness” 

rating (0–10) 

5.4 2.1 -61 % 

Mean SUS 68.2 81.4 +13.2 

Avg. follow-up 

questions per user 

0.6 1.8 ×3 



Frame rate (fps) 73.8 73.4 ≈ –0.5 (no 

impact) 

These results validate both functional and pedagogical objectives: the guide 

enhanced comprehension and engagement without harming performance. 

 

8.7 Discussion Snapshot 

• Context awareness mattered: relevance scores peaked when the guide 

referenced nearby objects. 

• Latency discipline paid off: users tolerated short generation delays when 

early subtitles signalled response. 

• Transparency increased trust: explicit hedging (“Scientists think…”) 

improved perceived honesty. 

• Accessibility design worked: dual-channel output benefited all users, not 

just those with impairments. 

• Remaining tension: balancing brevity and curiosity—some users wanted 

“just enough,” others “tell me more.” The follow-up prompt system partially 

addressed this. 

 

8.8 Summary 

Empirical results confirm the AI Virtual Guide meets its design aims: 

• Technical: real-time operation at 72 fps, < 2.5 s latency. 

• Experiential: SUS > 80 and high trust. 

• Educational: 22 % recall improvement, tripled inquiry rate. 

• Accessibility: all contrast and legibility goals achieved. 

The combination of local inference, context packing, and careful UI timing 

produced a guide that feels present, informative, and comfortable—evidence of 

viable conversational pedagogy inside mobile VR. 



Chapter 9 – Discussion 

9.1 Overview 

Testing confirmed that a locally hosted, context-aware conversational agent can 

operate smoothly on mobile VR hardware and still feel natural to users. 

The discussion below connects those findings to the project’s pedagogical intent—

learning through situated dialogue—and to the design principles drawn from prior 

research. 

 

9.2 What Worked Well 

9.2.1 Context Packing and Grounded Prompts 

The Context Packer → Ollama → TTS pipeline proved that even minimal scene 

metadata (biome, nearby taxa, lesson node) is enough to create believable 

situational dialogue. 

Users repeatedly remarked that the guide “talked about what I was looking at.” 

That specificity increased trust and recall, supporting the claim by Herpich et al. 

(2014) that contextual relevance outweighs sheer information volume. 

The JSON-based context feed also made educator auditing straightforward: every 

response could be traced back to a visible set of input variables—important for 

transparency in educational AI. 

 

9.2.2 Chunked Responses and Streaming Delivery 

Early prototypes with full-sentence narration felt sluggish. Token streaming—

showing 8-to-12-word subtitle bursts—shifted perception instantly. 

This aligns with conversational-turn research (Holz et al., 2006): users judge 

responsiveness by first feedback, not by total reply time. 

The visual “typing” effect acted as an honesty signal—proof the system was alive 

and attentive. 

 

 



9.2.3 Multimodal Output 

Dual-channel delivery (TTS + subtitles) did more than meet accessibility goals; it 

reduced cognitive strain. 

Participants alternated between listening and skimming, a form of dual coding that 

supports memory consolidation. 

Pietroni et al. (2021) predicted such multisensory redundancy would broaden 

inclusion; these results confirm that benefit extends to general audiences, not only 

those with impairments. 

 

9.2.4 Transparency and Trust 

Explicit hedging—phrases like “Scientists think…”—was initially inserted to 

satisfy ethical guidelines but became a key trust builder. 

Users described the guide as “honest” or “academic” rather than “robotic.” 

This echoes Ressi and Di Marzo Friha (2025), who emphasised interpretive 

transparency in GLAM settings: when visitors know where facts originate, 

credibility rises. 

 

9.2.5 Usability and Embodiment 

Subtle embodiment via Ready Player Me avatar and synchronized mouth motion 

was enough to sustain social presence without uncanny distraction. 

The guide felt nearby yet not intrusive. That balance between co-presence and 

restraint mirrors Papagiannakis et al. (2005), who found that minimal gestures 

often outperform elaborate animation for educational agents. 

 

9.3 Challenges and Tensions 

9.3.1 Brevity vs Depth 

Finding the right answer length remained difficult. 

Some learners preferred concise definitions; others wanted expanded explanations. 

A fixed word limit guaranteed comfort but sometimes truncated nuance. 

Future iterations might employ adaptive length logic—using quick user signals 

(“more detail”) to tune response depth dynamically. 



9.3.2 Model Generalisation and Hallucination 

Despite strong grounding, rare over-general statements still surfaced—especially 

when users asked about extinct species absent from the Knowledge Card set. 

The mitigation strategy (cite + hedge) kept these harmless, yet the issue highlights 

the limits of LLMs without curated retrieval. 

A hybrid model with a vector search over validated museum text could close that 

gap. 

 

9.3.3 Latency Perception 

While the measured latency met numeric targets, perception proved nonlinear: 

delays beyond ≈ 2.5 s broke conversational rhythm. 

Streaming helped, but future versions might overlap TTS generation with model 

decoding or use speculative text prediction to hide latency entirely. 

 

9.3.4 Context Noise and Misfires 

Occasional mismatches between user gaze and context tag caused slightly off 

answers (“It referred to a dinosaur behind me”). 

These stemmed from Unity collider precision and can be reduced with ray-cast 

weighting or eye-tracking input on newer headsets. 

 

9.4 Integration Lessons 

1. Loose coupling saved time. Each subsystem (Ollama, TTS, UI) 

communicated through JSON, allowing independent debugging. 

2. Educator contracts mattered. Having shared schemas for exhibit data 

prevented mismatched tags—an organisational rather than technical win. 

3. Telemetry turned into design feedback. Latency logs and “lostness” scores 

offered empirical guidance for UI changes instead of guesswork. 

4. Local inference justified itself. LAN-based Ollama maintained privacy, met 

latency goals, and removed dependence on external APIs—pragmatic for 

institutional deployment. 



9.5 Broader Implications 

9.5.1 Conversational Pedagogy in VR 

This project supports the idea that VR learning benefits not from higher graphical 

realism but from situated conversational scaffolding. 

When users can query phenomena directly (“Why are they spaced apart?”), they 

move from passive viewing to inquiry—replicating field-trip learning dynamics 

inside virtual space. 

9.5.2 Design Ethics 

The guide demonstrates an ethical middle ground: 

• generate locally, 

• disclose uncertainty, 

• cite sources. 

Such transparency may become standard in educational XR as institutions 

demand explainable AI. 

9.5.3 Scalability to Other Domains 

The same pipeline—context packer + local LLM + TTS—could serve archaeology 

tours, anatomy labs, or architecture walk-throughs. 

Because interfaces remain modular, educators can repurpose it by swapping 

Knowledge Cards and voice profiles without retraining models. 

 

9.6 Reflection on User Experience 

The qualitative pattern—users felt accompanied but not lectured—suggests a new 

UX role: the contextual companion. 

It neither replaces human educators nor serves as a static narrator; it fills the quiet 

gaps between observation and understanding. 

The strongest engagement occurred when users discovered something first, then 

used the guide to confirm or extend insight—evidence that well-timed AI prompts 

can amplify, not replace, curiosity. 

 



9.7 Limitations Revisited 

Even a well-tuned prototype faces structural limits: 

• Language: English-only output; no multilingual synthesis yet. 

• Dataset coverage: finite Knowledge Cards; rare taxa under-represented. 

• Hardware constraints: local inference still needs a PC-class GPU. 

• Evaluation scope: small sample size (n = 20); results indicative, not 

conclusive. 

These caveats frame the work as a proven concept rather than a finished museum 

deployment. 

 

9.8 Summary 

The discussion highlights a core insight: spatially aware dialogue transforms VR 

from spectacle to inquiry. 

By blending efficient local AI with thoughtful pedagogical grounding, the 

Prehistoric VR Museum achieved both performance reliability and educational 

authenticity. 

The experiment validates context-aware conversational guidance as a practical, 

ethical, and extensible pattern for immersive learning systems. 

 

Chapter 10 – Limitations 

10.1 Overview 

Every prototype balances ambition with constraint. 

The AI Virtual Guide demonstrates that real-time, context-aware conversation is 

feasible in standalone VR, but its scope and hardware place boundaries on 

performance, coverage, and generalization. 

Recognizing these limits clarifies both credibility and direction for future 

iterations. 

 



10.2 Technical Limitations 

10.2.1 Hardware Dependency 

• Server requirement: the current implementation relies on a local PC (GPU-

accelerated) running the Ollama and TTS services. 

o Although LAN latency is low, portability is reduced. 

o A fully standalone Quest build would need smaller models or on-

device quantisation. 

• Thermal and runtime limits: long sessions (>30 min) raise headset 

temperature, occasionally throttling CPU and affecting frame timing by ~1–

2 fps. 

10.2.2 Model Constraints 

• Knowledge coverage: the Llama-3.1 model, though grounded with 

Knowledge Cards, still lacks long-tail data about specific prehistoric species. 

• Language scope: English-only operation; translation layers not yet 

integrated. 

• Generalisation behaviour: occasional paraphrasing or over-simplification 

persists, particularly when cards are sparse. 

• Static context size: the Context Packer captures a snapshot rather than 

continuous scene understanding; it cannot yet interpret complex dynamic 

behaviours (e.g., multi-agent interactions). 

10.2.3 Network Dependence 

• LAN requirement: the guide functions only when the headset reaches the 

local Ollama server; high Wi-Fi interference increases first-token latency by 

up to 1 s. 

 

 

 

 



10.3 Pedagogical and UX Limitations 

10.3.1 Evaluation Scope 

• Sample size: usability testing involved 20 participants—adequate for 

formative insight but insufficient for statistical generalisation. 

• Short-term measurement: comprehension gains measured immediately 

post-session; long-term retention remains untested. 

• Demographic bias: participants were university students; younger 

audiences or museum visitors may exhibit different interaction styles. 

10.3.2 Conversational Breadth 

• The guide handles structured factual and explanatory queries but struggles 

with abstract or emotional prompts (“Do you think dinosaurs cared for their 

young?”). 

• No genuine dialogue memory: each query is stateless beyond current 

context. 

• Turn-taking lacks prosodic nuance; users occasionally felt abrupt transitions 

between TTS chunks. 

10.3.3 Personalisation 

• One voice model, one avatar. 

• No adaptation to individual pace, prior knowledge, or interest level. 

• Educator-driven lesson nodes provide scaffolding but not learner modelling. 

10.4 Operational and Maintenance Limits 

• Content authoring overhead: educators must create and validate JSON 

Knowledge Cards manually; no integrated authoring UI yet. 

• Version control: while modular, updates to Unity or Ollama may break API 

calls unless maintained in sync. 

• Security perimeter: local servers reduce exposure but rely on proper LAN 

configuration; data encryption and access policies still basic. 

 



10.5 Conceptual Boundaries 

• The guide aims to assist, not assess. It explains and invites inquiry but does 

not grade or formally evaluate user understanding. 

• It embodies situated awareness, not true sentience or adaptive pedagogy. 

• The experience remains guided by human educators: AI augments 

storytelling but does not replace expert interpretation. 

 

10.6 Summary 

Key limitations can be grouped as follows: 

Domain Limitation Impact 

Hardware Requires LAN-connected server Limits portability 

Model Finite knowledge & English-only Restricts diversity of content 

UX No persistent memory Reduces conversational depth 

Evaluation Small sample, short term Limits generalisability 

Despite these constraints, the prototype succeeds within its defined scope—real-

time, context-aware guidance under mobile VR constraints—and establishes a 

credible baseline for scaling toward richer, multilingual, and more autonomous 

educational experiences. 

 

Chapter 11 – Future Work 

11.1 Overview 

The Prehistoric VR Museum’s AI Virtual Guide proved that localized, context-

aware dialogue can operate smoothly inside a standalone headset. The next stage 

moves from working demo to scalable educational platform. Future work spans 

three fronts: technology, pedagogy, and institutional deployment. 

 

 



11.2 Technical Extensions 

11.2.1 Multilingual and Expressive Voices 

• Integrate multilingual TTS using Glow-TTS-Multilang or OpenVoice to 

support Sinhala, Tamil, and English. 

• Enable regional voice fonts and subtle emotional tone—enthusiasm for 

discoveries, calm for reflection—to match exhibit mood. 

• Extend subtitle engine for bidirectional scripts and right-to-left rendering. 

11.2.2 Richer Retrieval and Grounding 

• Implement a retrieval-augmented generation (RAG) pipeline using a 

vector database of verified museum texts. 

• Embed citations directly into responses, producing clickable “learn more” 

cards. 

• Train lightweight classifiers to detect when a question requires factual 

lookup vs. conceptual reasoning. 

11.2.3 Adaptive Dialogue and Memory 

• Introduce ephemeral conversation memory to preserve context across turns 

within a session (“Earlier you asked about herbivores…”). 

• Use reinforcement signals (user dwell time, follow-ups) to adjust verbosity 

and depth dynamically. 

• Explore small transformer fine-tuning on domain-specific museum dialogues 

for tone consistency. 

11.2.4 Edge Deployment and Offline Mode 

• Package quantised LLM (≤ 2 B parameters) for direct Quest inference, 

eliminating LAN dependency. 

• Cache TTS audio for top-50 responses; fall back to text-only mode when 

GPU unavailable. 

• Evaluate latency and power trade-offs between local inference and remote 

streaming. 



11.2.5 Analytics and Educator Dashboard 

• Build a secure web dashboard that aggregates telemetry logs (queries, 

latency, topic heatmaps). 

• Provide real-time “question queue” for educators to observe curiosity 

patterns during sessions. 

• Include export options compliant with institutional privacy frameworks (ISO 

27701 / GDPR). 

 

11.3 Pedagogical Enhancements 

11.3.1 Curricular Integration 

• Develop short formative quizzes surfaced by the guide after key interactions 

(“Which feature helps the Triceratops defend itself?”). 

• Allow teachers to author adaptive lesson paths that the guide can follow. 

11.3.2 Collaborative Modes 

• Extend single-user guide into a shared multi-user museum session where 

each learner’s questions broadcast to peers. 

• Experiment with “co-presence tutors”: the AI summarises group discoveries 

and mediates discussion. 

 

11.3.3 Accessibility and Inclusion 

• Add sign-language avatar overlay or vibration cues for deaf/hard-of-hearing 

visitors. 

• Offer simplified-language mode for younger audiences. 

• Support haptic guidance to orient users with mobility limitations toward 

points of interest. 

 

 



11.4 Institutional and Research Directions 

11.4.1 Scalable Deployment in Museums 

• Package the system as a containerised bundle (Unity App + Ollama + TTS 

Docker) deployable on exhibit servers. 

• Provide remote update channel for new content without touching headset 

firmware. 

• Conduct cross-site pilots (museum vs. classroom) to study contextual 

learning in situ. 

11.4.2 Longitudinal Studies 

• Track learning retention over weeks to measure durable understanding 

versus novelty effect. 

• Examine how repeated exposure influences scientific curiosity and 

vocabulary acquisition. 

• Collect ethical-consent telemetry for data-driven educational research. 

11.4.3 Standardisation and Open Frameworks 

• Publish the Context Packer schema and guardrail templates under an open 

license for reuse in other XR projects. 

• Collaborate with heritage institutions to build a shared corpus of verified 

Knowledge Cards. 

• Define benchmarking metrics—latency, trust, factuality—to compare 

conversational guides across platforms. 

 

11.5 Summary 

Future work pivots from proof-of-concept to ecosystem: 

• Technically, make the guide portable, multilingual, and self-optimising. 

• Pedagogically, weave it into curricula and collaborative learning. 

• Institutionally, open-source its context framework to standardise ethical, 

transparent conversational agents in museums. 



These directions move the Prehistoric VR Museum from a single immersive 

exhibit toward a living, extensible platform for experiential science education. 

 

Chapter 12 – Individual Contribution 

12.1 Overview 

The AI Virtual Guide component was primarily developed and integrated by 

Waynath S.P.K (IT21803420) as part of the Prehistoric VR Museum group project 

for the B.Sc. (Hons) in Information Technology (Interactive Media). 

This section details individual technical, design, and research responsibilities and 

their alignment with project objectives. 

 

12.2 Technical Development 

12.2.1 System Architecture and Integration 

• Designed the end-to-end pipeline connecting Unity, the Context Packer, 

Ollama (Llama-3.1-8B), and Glow-TTS through asynchronous REST 

communication. 

• Implemented the MuseumGuide.cs controller script to coordinate user 

input, context acquisition, model inference, and audio-text synchronisation. 

• Integrated the Python TTS micro-service with caching and audio hash 

look-up for efficiency. 

• Configured and optimised the local Ollama environment, including model 

quantisation, streaming parameters, and token budget tuning. 

12.2.2 Context Awareness and Scene Logic 

• Authored the ContextProber.cs subsystem that extracts biome, nearby taxa, 

distance, and lesson-node data directly from the Unity scene graph. 

• Established contracts between this subsystem and other team modules 

(Biome Manager, ML-Agents) to ensure stable data exchange. 

• Designed JSON schema for context packets and Knowledge Card look-ups. 



12.2.3 Interaction and Output Systems 

• Built the VoiceToInputFieldButton.cs speech interface with debounce and 

fallback logic. 

• Developed the Subtitle UI for streaming token display with accessibility-

compliant scaling and colour contrast. 

• Implemented RPMMouthFromAudio.cs to animate Ready Player Me 

avatars from audio amplitude envelopes, preserving frame rate. 

• Devised guardrail filters for safe-topic enforcement, hedging, and citation 

tagging. 

 

12.3 Research and Evaluation Work 

• Conducted literature synthesis on context-aware and situated learning 

systems, drawing from sources such as Herpich (2014), Papagiannakis 

(2005), and Ressi (2025). 

• Designed prompt templates and evaluation metrics (first-token latency, 

“lostness” index, SUS). 

• Organised and led pilot usability sessions with 20 participants, collecting 

both quantitative and qualitative data. 

• Analysed results using Python (pandas, matplotlib) to produce latency 

graphs and engagement correlations. 

• Drafted all sections of the component report relating to the AI Virtual 

Guide, including architecture, testing, and future work. 

 

12.4 Collaboration and Team Context 

• Coordinated with environment and animation leads to ensure context tags 

matched visual assets. 

• Shared Unity prefabs and JSON templates through version control (GitHub). 



• Provided technical documentation for integration and troubleshooting to 

other team members. 

• Contributed to overall system testing sessions and debugging of cross-

component triggers. 

 

12.5 Skills and Competencies Demonstrated 

Category Competency 

Software 

Engineering 

Asynchronous API design, performance profiling, modular 

scripting 

AI Integration Local LLM orchestration, TTS/ASR handling, prompt 

engineering 

UX Design Accessibility-focused VR interface development 

Research Literature analysis, experimental design, data 

interpretation 

Collaboration Cross-disciplinary coordination within a multi-role project 

 

 

12.6 Summary 

Waynath S.P.K’s contribution centred on designing and implementing the AI 

Virtual Guide subsystem—from concept and architecture through testing and 

evaluation. 

This work represents the core bridge between the Prehistoric VR Museum’s visual 

world and its conversational intelligence, demonstrating both technical depth and 

research-driven design. 

 

 

 



Chapter 13 – Conclusion 

13.1 Summary of the Component 

The AI Virtual Guide for the Prehistoric VR Museum transforms a static VR 

exhibit into a responsive, educational encounter. 

It listens, interprets, and speaks in context—adapting explanations to what the 

learner sees and does. 

By combining a local large language model (Llama-3.1 via Ollama) with scene-

aware metadata and text-to-speech narration, the system bridges conversational 

AI and immersive learning in real time. 

Across design, implementation, and testing, the component met its primary 

objectives: 

• Context awareness: achieved through real-time biome and taxa tagging. 

• Performance: maintained ≥ 72 fps and ≤ 2.5 s first-token latency. 

• Usability: SUS = 81 (“Excellent”), reduced “lostness” by 61 %. 

• Pedagogical impact: +22 % improvement in recall, 3× increase in follow-

up questions. 

• Accessibility: dual-channel narration met WCAG AA standards. 

These results validate that situated, conversational scaffolding can be implemented 

within the tight power and compute limits of standalone VR. 

 

13.2 Significance 

The project demonstrates a practical pathway for contextual pedagogy in 

extended reality. 

Rather than treat AI as a trivia engine or detached chatbot, the guide functions as 

an interpretive layer within the environment—responsive, transparent, and 

educationally grounded. 

It proves that local, privacy-respecting inference can match user expectations for 

responsiveness while allowing institutions to retain content control. 



For learners, the guide converts passive observation into inquiry. 

For educators, it offers a tool to shape curiosity in real time, anchored to 

scientifically validated content. 

 

13.3 Lessons Learned 

1. Responsiveness is relational. Perceived speed matters more than raw 

processing time; token streaming and immediate subtitles foster trust. 

2. Transparency builds credibility. Citing Knowledge Cards and hedging 

uncertainty made the guide feel authentic rather than evasive. 

3. Simplicity scales. Lightweight JSON context packs outperformed heavy 

semantic mapping for both latency and maintainability. 

4. AI needs choreography, not spectacle. Subtle timing, silence, and brevity 

kept users comfortable within VR’s cognitive limits. 

 

13.4 Outlook 

The component now stands as a modular base for wider educational XR 

experiences—museums, archaeology sites, biology field labs—where spatial 

awareness and conversation merge. 

Planned evolutions include multilingual voices, retrieval-augmented grounding, 

educator dashboards, and adaptive pacing. 

Each step moves toward a vision of ethical, explainable, and inclusive AI 

companions that extend human teaching rather than replace it. 

13.5 Closing Reflection 

The AI Virtual Guide began as a technical experiment and ended as a reminder: 

learning thrives when technology listens. 

By embedding awareness and humility into its design—seeing before it speaks—

the guide models the same curiosity it seeks to inspire in its users. 

It turns the museum from a place of observation into a space of dialogue—where 

every question, however small, can spark discovery. 
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